Skip to main content

Advertisement

Log in

An efficient multi-objective PSO algorithm assisted by Kriging metamodel for expensive black-box problems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The huge computational overhead is the main challenge in the application of community based optimization methods, such as multi-objective particle swarm optimization and multi-objective genetic algorithm, to deal with the multi-objective optimization involving costly simulations. This paper proposes a Kriging metamodel assisted multi-objective particle swarm optimization method to solve this kind of expensively black-box multi-objective optimization problems. On the basis of crowding distance based multi-objective particle swarm optimization algorithm, the new proposed method constructs Kriging metamodel for each expensive objective function adaptively, and then the non-dominated solutions of the metamodels are utilized to guide the update of particle population. To reduce the computational cost, the generalized expected improvements of each particle predicted by metamodels are presented to determine which particles need to perform actual function evaluations. The suggested method is tested on 12 benchmark functions and compared with the original crowding distance based multi-objective particle swarm optimization algorithm and non-dominated sorting genetic algorithm-II algorithm. The test results show that the application of Kriging metamodel improves the search ability and reduces the number of evaluations. Additionally, the new proposed method is applied to the optimal design of a cycloid gear pump and achieves desirable results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Bittner, F., Hahn, I.: Kriging-Assisted Multi-Objective Particle Swarm Optimization of permanent magnet synchronous machine for hybrid and electric cars. Paper presented at the electric machines and drives conference (IEMDC), 2013 IEEE International, 12–15 May 2013

  2. Box, G.E.P., Draper, N.R.: Empirical Model-Building and Response Surfaces. Wiley, London (1987)

    MATH  Google Scholar 

  3. Chen, G., Han, X., Liu, G., Jiang, C., Zhao, Z.: An efficient multi-objective optimization method for black-box functions using sequential approximate technique. Appl. Soft Comput. 12(1), 14–27 (2012). doi:10.1016/j.asoc.2011.09.011

    Article  Google Scholar 

  4. Coello, C.A., Pulido, G.T., Lechuga, M.S.: Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 256–279 (2004). doi:10.1109/TEVC.2004.826067

    Article  Google Scholar 

  5. Coello, C.A.C., Lechuga, M.S.: MOPSO: a proposal for multiple objective particle swarm optimization. In: Proceedings of the 2002 Congress on Evolutionary Computation, CEC ’02 (2002)

  6. Deb, K.: Multi-objective Optimization using Evolutionary Algorithm. Wiley, London (2001)

    MATH  Google Scholar 

  7. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. Lect. Notes Comput. Sci. 1917, 849–858 (2000)

    Article  Google Scholar 

  8. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Paper Presented at the Proceedings of the Congress on Evolutionary Computation (CEC-2002). Honolulu, USA (2002)

  9. Emmerich, M.T.M., Giannakoglou, K.C., Naujoks, B.: Single-and multiobjective evolutionary optimization assisted by Gaussian random field metamodels. IEEE Trans. Evol. Comput. 10(4), 421–439 (2006). doi:10.1109/TEVC.2005.859463

    Article  Google Scholar 

  10. Friedman, J.H.: Multivariate adaptive regression splines. Ann. Stat. 19(1), 1–67 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Friedman, J.H.: Fast MARS. Ph.D diss, Stanford University. Dept. of Statistics. Laboratory for Computational Statistics (1993)

  12. Goel, T., Vaidyanathan, R., Haftka, R.T., Shyy, W., Queipo, N.V., Tucker, K.: Response surface approximation of Pareto optimal front in multi-objective optimization. Comput. Methods Appl. Mech. Eng. 196(4–6), 879–893 (2007). doi:10.1016/j.cma.2006.07.010

    Article  MATH  Google Scholar 

  13. Gu, J., Li, G.Y., Dong, Z.: Hybrid and adaptive meta-model-based global optimization. Eng. Optim. 44(1), 87–104 (2012)

    Article  Google Scholar 

  14. Jie, H., Wu, Y., Ding, J.: An adaptive metamodel-based global optimization algorithm for black-box type problems. Eng. Optim. 1–22 (2014). doi:10.1080/0305215X.2014.979814

  15. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Krige, D.G.: A statistical approach to some basic mine valuation problems on the Witwatersrand. J. Chem. Metall. Min. Soc. S. Afr. 52(6), 119–139 (1951)

    Google Scholar 

  17. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann Publishers Inc, Burlington (2001)

    Google Scholar 

  18. Li, M., Li, G., Azarm, S.: A Kriging metamodel assisted multi-objective genetic algorithm for design optimization. J. Mech. Des. 130(3), 031401-01 (2008). doi:10.1115/1.2829879

    Article  Google Scholar 

  19. Lophaven, S.N., Nielsen, H.B., Søndergaard, J.: DACE–A MATLAB Kriging Toolbox—Version 2.0. (2002). http://www.imm.dtu.dk/~hbni/dace/dace.pdf

  20. Powell, M.J.D.: The theory of radial basis function approximation in 1990. Adv. Numer. Anal. 2, 105–210 (1992)

    MathSciNet  MATH  Google Scholar 

  21. Raquel, C.R., Prospero Jr., C.N.: An effective use of crowding distance in multiobjective particle swarm optimization. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, pp. 257–264. ACM, Washington DC, USA 1068047 (2005)

  22. Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments. Stat. Sci. 4(4), 409–423 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schott, J.R.: Fault Tolerant Design Using Single and Multi Criteria Genetic Algorithm Optimization. Master, Massachusetts Institute of Technology (1995)

  24. Tappeta, R., Renaud, J.: Interactive multiobjective optimization procedure. AIAA J. 37(7), 881–889 (1999). doi:10.2514/2.7537

    Article  Google Scholar 

  25. Van Veldhuizen, D.A., Lamont, G.B.: Multiobjective evolutionary algorithm research: A history and analysis. Evol. Comput. 8(2), 125–147 (1998)

    Google Scholar 

  26. Vapnik, V., Golowich, S.E., Smola, A.: Support Vector Method for Function Approximation, Regression Estimation and Signal Processing. MIT Press, Dever, CO (1997)

  27. Wang, L., Shan, S., Wang, G.G.: Mode-pursuing sampling method for global optimization on expensive black-box functions. Eng. Optim. 36(4), 419–438 (2004)

    Article  Google Scholar 

  28. Wilson, B., Cappelleri, D., Simpson, T.W., Frecker, M.: Efficient Pareto frontier exploration using surrogate approximations. Optim. Eng. 2(1), 31–50 (2001). doi:10.1023/A:1011818803494

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Nature Science Foundation of China (Number 51575205) and the National High Technology Research and Development Program (863 Program) of China (Number 2013AA041301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jie, H., Wu, Y., Zhao, J. et al. An efficient multi-objective PSO algorithm assisted by Kriging metamodel for expensive black-box problems. J Glob Optim 67, 399–423 (2017). https://doi.org/10.1007/s10898-016-0428-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-016-0428-2

Keywords

Navigation