Skip to main content
Log in

Balancing global and local search in parallel efficient global optimization algorithms

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Most parallel efficient global optimization (EGO) algorithms focus only on the parallel architectures for producing multiple updating points, but give few attention to the balance between the global search (i.e., sampling in different areas of the search space) and local search (i.e., sampling more intensely in one promising area of the search space) of the updating points. In this study, a novel approach is proposed to apply this idea to further accelerate the search of parallel EGO algorithms. In each cycle of the proposed algorithm, all local maxima of expected improvement (EI) function are identified by a multi-modal optimization algorithm. Then the local EI maxima with value greater than a threshold are selected and candidates are sampled around these selected EI maxima. The results of numerical experiments show that, although the proposed parallel EGO algorithm needs more evaluations to find the optimum compared to the standard EGO algorithm, it is able to reduce the optimization cycles. Moreover, the proposed parallel EGO algorithm gains better results in terms of both number of cycles and evaluations compared to a state-of-the-art parallel EGO algorithm over six test problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang, G.G., Shan, S.: Review of metamodeling techniques in support of engineering design optimization. J. Mech. Des. 129(2), 370–380 (2007)

    Article  Google Scholar 

  2. Viana, F.A.C., Simpson, T.W., Balabanov, V., Toropov, V.: Metamodeling in multidisciplinary design optimization: How far have we really come? AIAA J. 52(4), 670–690 (2014)

    Article  Google Scholar 

  3. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Jones, D.R.: A taxonomy of global optimization methods based on response surfaces. J. Glob. Optim. 21(4), 345–383 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Huang, D., Allen, T.T., Notz, W.I., Zeng, N.: Global optimization of stochastic black-box systems via sequential kriging meta-models. J. Glob. Optim. 34(3), 441–466 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Forrester, A.I., Keane, A.J., Bressloff, N.W.: Design and analysis of noisy computer experiments. AIAA J. 44(10), 2331–2339 (2006)

  7. Sasena, M.J., Papalambros, P., Goovaerts, P.: Exploration of metamodeling sampling criteria for constrained global optimization. Eng. Optim. 34(3), 263–278 (2002)

    Article  Google Scholar 

  8. Parr, J.M., Keane, A.J., Forrester, A.I.J., Holden, C.M.E.: Infill sampling criteria for surrogate-based optimization with constraint handling. Eng. Optim. 44(10), 1147–1166 (2012)

    Article  MATH  Google Scholar 

  9. Couckuyt, I., Deschrijver, D., Dhaene, T.: Fast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization. J. Glob. Optim. 60(3), 575–594 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ginsbourger, D., Le Riche, R., Carraro, L.: Kriging is well-suited to parallelize optimization. In: Tenne, Y., Goh, C.-K. (eds.) Computational Intelligence in Expensive Optimization Problems, vol. 2, pp. 131–162. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Viana, F.A.C., Haftka, R.T., Watson, L.T.: Efficient global optimization algorithm assisted by multiple surrogate techniques. J. Glob. Optim. 56(02), 669–689 (2013)

    Article  MATH  Google Scholar 

  12. Feng, Z.W., Zhang, Q.B., Zhang, Q.F., Tang, Q.G., Yang, T., Ma, Y.: A multiobjective optimization based framework to balance the global exploration and local exploitation in expensive optimization. J. Glob. Optim. 61(4), 677–694 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bischl, B., Wessing, S., Bauer, N., Friedrichs, K., Weihs, C.: MOI–MBO: multiobjective infill for parallel model-based optimization. In: Pardalos, P.M., Resende, M.G.C., Vogiatzis, C., Walteros, J.L. (eds.) Learning and Intelligent Optimization. Lecture Notes in Computer Science, pp. 173–186. Springer, Berlin (2014)

    Google Scholar 

  14. Sóbester, A., Leary, S.J., Keane, A.J.: A parallel updating scheme for approximating and optimizing high fidelity computer simulations. Struct. Multidiscip. Optim. 27(5), 371–383 (2004)

    Article  Google Scholar 

  15. Forrester, A., Sóbester, A., Keane, A.: Engineering Design Via Surrogate Modelling: A Practical Guide. Wiley, New York (2008)

    Book  Google Scholar 

  16. Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments. Stat. Sci. 4(4), 409–423 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Torn, A., Zilinskas, A.: Global Optimization. Springer, Berlin (1987)

    MATH  Google Scholar 

  18. Li, X., Engelbrecht, A., Epitropakis, M.: Results of the 2013 IEEE CEC competition on Niching methods for multimodal optimization. In: IEEE Congress on Evolutionary Computation Competition on Niching Methods for Multimodal Optimization (2013)

  19. Fieldsend, J.E.: Running up those hills: multi-modal search with the niching migratory multi-swarm optimiser. In: IEEE Congress on Evolutionary Computation (CEC), pp. 2593–2600 (2014). http://github.com/fieldsend/ieee_cec_2014_nmmso

  20. Zhang, J., De-Shuang, H., Kun-Hong, L.: Multi-sub-swarm particle swarm optimization algorithm for multimodal function optimization. In: IEEE Congress on Evolutionary Computation (CEC), pp. 3215–3220 (2007)

  21. Younis, A., Dong, Z.: Metamodelling and search using space exploration and unimodal region elimination for design optimization. Eng. Optim. 42(6), 517–533 (2010)

    Article  Google Scholar 

  22. Das, S., Maity, S., Qu, B.-Y., Suganthan, P.N.: Real-parameter evolutionary multimodal optimization—a survey of the state-of-the-art. Swarm Evol. Comput. 1(2), 71–88 (2011)

    Article  Google Scholar 

  23. Dixon, L.C.W., Szegö, G.P.: Towards Global Optimization 2. North Holland, Amsterdam (1978)

    Google Scholar 

  24. Sasena, M.J.: Flexibility and Efficiency Enhancements for Constrained Global Design Optimization with Kriging Approximations. University of Michigan, Ann Arbor (2002)

    Google Scholar 

  25. Lophaven, S.N., Nielsen, H.B., Søndergaard, J.: Dace—A Matlab Kriging Toolbox. Tech. Rep. IMMTR200212, Technical University of Denmark, Denmark (2002). http://www2.imm.dtu.dk/hbn/dace/

  26. Viana, F.A.C.: SURROGATES Toolbox Users Guide. Gainesville, FL, USA, version 3.0 edn. (2011). http://sites.google.com/site/felipeacviana/surrogatestoolbox

  27. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Springer, New York (2005)

    MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank the anonymous reviewers for their helpful comments

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuansheng Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, D., Qian, J. & Cheng, Y. Balancing global and local search in parallel efficient global optimization algorithms . J Glob Optim 67, 873–892 (2017). https://doi.org/10.1007/s10898-016-0449-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-016-0449-x

Keywords

Navigation