Skip to main content
Log in

A nonlinear programming model with implicit variables for packing ellipsoids

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The problem of packing ellipsoids is considered in the present work. Usually, the computational effort associated with numerical optimization methods devoted to packing ellipsoids grows quadratically with respect to the number of ellipsoids being packed. The reason is that the number of variables and constraints of ellipsoids’ packing models is associated with the requirement that every pair of ellipsoids must not overlap. As a consequence, it is hard to solve the problem when the number of ellipsoids is large. In this paper, we present a nonlinear programming model for packing ellipsoids that contains a linear number of variables and constraints. The proposed model finds its basis in a transformation-based non-overlapping model recently introduced by Birgin et al. (J Glob Optim 65(4):709–743, 2016). For solving large-sized instances of ellipsoids’ packing problems with up to 1000 ellipsoids, a multi-start strategy that combines clever initial random guesses with a state-of-the-art (local) nonlinear optimization solver is presented. Numerical experiments show the efficiency and effectiveness of the proposed model and methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Andreani, R., Birgin, E.G., Martínez, J.M., Schuverdt, M.L.: On augmented Lagrangian methods with general lower-level constraints. SIAM J. Optim. 18(4), 1286–1309 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andretta, M., Birgin, E.G., Martínez, J.M.: Practical active-set Euclidian trust-region method with spectral projected gradients for bound-constrained minimization. Optimization 54(3), 305–325 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

  4. Bezrukov, A., Stoyan, D.: Simulation and statistical snalysis of random packings of ellipsoids. Par. Part. Syst. Charact. 23(5), 388–398 (2007)

    Article  Google Scholar 

  5. Birgin, E.G., Bustamante, L.H., Callisaya, H.F., Martínez, J.M.: Packing circles within ellipses. Int. Trans. Oper. Res. 20(3), 365–389 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Birgin, E.G., Floudas, C.A., Martínez, J.M.: Global minimization using an augmented Lagrangian method with variable lower-level constraints. Math. Program. 125(1), 139–162 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Birgin, E.G., Gentil, J.M.: New and improved results for packing identical unitary radius circles within triangles, rectangles and strips. Comput. Oper. Res. 37(7), 1318–1327 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Birgin, E.G., Lobato, R.D., Martínez, J.M.: Packing ellipsoids by nonlinear optimization. J. Glob. Optim. 65(4), 709–743 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Birgin, E.G., Martínez, J.M.: A box-constrained optimization algorithm with negative curvature directions and spectral projected gradients. Computing [Suppl] 15(1), 49–60 (2001)

    MathSciNet  MATH  Google Scholar 

  10. Birgin, E.G., Martínez, J.M.: Large-scale active-set box-constrained optimization method with spectral projected gradients. Comput. Optim. Appl. 23(1), 101–125 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Birgin, E.G., Martínez, J.M.: Practical Augmented Lagrangian Methods for Constrained Optimization. Society for Industrial and Applied Mathematics, Philadelphia (2014)

    Book  MATH  Google Scholar 

  12. Birgin, E.G., Martínez, J.M., Raydan, M.: Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim. 10(4), 1196–1211 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Birgin, E.G., Martínez, J.M., Raydan, M.: Algorithm 813: SPG-software for convex-constrained optimization. ACM Trans. Math. Softw. 27(3), 340–349 (2001)

    Article  MATH  Google Scholar 

  14. Birgin, E.G., Martínez, J.M., Ronconi, D.P.: Optimizing the packing of cylinders into a rectangular container: a nonlinear approach. Eur. J. Oper. Res. 160(1), 19–33 (2005)

    Article  MATH  Google Scholar 

  15. Birgin, E.G., Sobral, F.N.C.: Minimizing the object dimensions in circle and sphere packing problems. Comput. Oper. Res. 35(7), 2357–2375 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Castillo, I., Kampas, F.J., Pintér, J.D.: Solving circle packing problems by global optimization: numerical results and industrial applications. Eur. J. Oper. Res. 191(3), 786–802 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chernov, N., Stoyan, Yu., Romanova, T.: Mathematical model and efficient algorithms for object packing problem. Comput. Geom. 43(5), 535–553 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Choi, Y.K., Chang, J.W., Wang, W., Kim, M.S., Elber, G.: Continuous collision detection for ellipsoids. IEEE Trans. Vis. Comput. Graph. 15(2), 311–324 (2009)

    Article  Google Scholar 

  19. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups Volume 290 of Grundlehren der math. Wissenschaften. Springer, New York (1999)

    Book  Google Scholar 

  20. Donev, A., Cisse, I., Sachs, D., Variano, E., Stillinger, F.H., Connelly, R., Torquato, S., Chaikin, P.M.: Improving the density of jammed disordered packings using ellipsoids. Science 303(5660), 990–993 (2004)

    Article  Google Scholar 

  21. Donev, A., Connelly, R., Stillinger, F.H., Torquato, S.: Underconstrained jammed packings of nonspherical hard particles: ellipses and ellipsoids. Phys. Rev. E 75(5), 051304 (2007)

    Article  MathSciNet  Google Scholar 

  22. Donev, A., Stillinger, F.H., Chaikin, P.M., Torquato, S.: Unusually dense crystal packings of ellipsoids. Phys. Rev. Lett. 92, 255506 (2004)

    Article  Google Scholar 

  23. Donev, A., Torquato, S., Stillinger, F.H.: Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. I. Algorithmic details. J. Comput. Phys. 202(2), 737–764 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Donev, A., Torquato, S., Stillinger, F.H.: Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. II. Applications to ellipses and ellipsoids. J. Comput. Phys. 202(2), 765–793 (2005)

    MathSciNet  MATH  Google Scholar 

  25. Galiev, ShI, Lisafina, M.S.: Numerical optimization methods for packing equal orthogonally oriented ellipses in a rectangular domain. Comput. Math. Math. Phys. 53(11), 1748–1762 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  27. Izmailov, A.F., Solodov, M.V., Uskov, E.I.: Global convergence of augmented Lagrangian methods applied to optimization problems with degenerate constraints, including problems with complementarity constraints. SIAM J. Optim. 22(4), 1579–1606 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Izmailov, A.F., Solodov, M.V., Uskov, E.I.: Combining stabilized SQP with the augmented Lagrangian algorithm. Comput. Optim. Appl. 62(2), 405–429 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kallrath, J.: Cutting circles and polygons from area-minimizing rectangles. J. Glob. Optim. 43(2), 299–328 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kallrath, J.: Packing ellipsoids into volume-minimizing rectangular boxes. J. Glob. Optim. (2015). doi:10.1007/s10898-015-0348-6

  31. Kallrath, J., Rebennack, S.: Cutting ellipses from area-minimizing rectangles. J. Glob. Optim. 59(2), 405–437 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kampas, F.J., Castillo, I., Pintér, J.D.: General ellipse packings in optimized regular polygons. http://www.optimization-online.org/DB_HTML/2016/03/5348.html (2016)

  33. Kampas, F.J., Pintér, J.D., Castillo, I.: General ellipse packings in an optimized circle using embedded Lagrange multipliers. http://www.optimization-online.org/DB_HTML/2016/01/5293.html (2016)

  34. Lobato, R.D.: Ellipsoid packing. PhD thesis, University of Sao Paulo (2015)

  35. Man, W., Donev, A., Stillinger, F.H., Sullivan, M.T., Russel, W.B., Heeger, D., Inati, S., Torquato, S., Chaikin, P.M.: Experiments on random packings of ellipsoids. Phys. Rev. Lett. 104, 185501 (2010)

    Article  Google Scholar 

  36. Martínez, J.M.: Local minimizers of quadratic functions on euclidean balls and spheres. SIAM J. Optim. 4(1), 159–176 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  37. Martínez, L., Andrade, R., Birgin, E.G., Martínez, J.M.: Packmol: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30(13), 2157–2164 (2009)

    Article  Google Scholar 

  38. Pankratov, A., Romanova, T., Khlud, O.: Quasi-phi-functions in packing problem of ellipsoids. Radioelectron. Inform. 68(1), 37–41 (2015)

    Google Scholar 

  39. Stoyan, Y., Romanova, T., Pankratov, A., Chugay, A.: Optimized object packings using quasi-phi-functions. In: Fasano, G., Pintér, J.D. (eds.) Optimized Packings with Applications, Volume 105 of Springer Optimization and Its Applications, Chapter 13, pp. 265–293. Springer, Cham (2015)

    Chapter  Google Scholar 

  40. Stoyan, Y.G., Pankratov, A., Romanova, T.: Quasi-phi-functions and optimal packing of ellipses. J. Glob. Optim. 65(2), 283–307 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Stoyan, Y.G., Yas’kov, G.: A mathematical model and a solution method for the problem of placing various-sized circles into a strip. Eur. J. Oper. Res. 156(3), 590–600 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Stoyan, Y.G., Yas’kov, G.: Packing congruent hyperspheres into a hypersphere. J. Glob. Optim. 52(4), 855–868 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Stoyan, Y.G., Yas’kov, G.: Packing equal circles into a circle with circular prohibited areas. Int. J. Comput. Math. 89(10), 1355–1369 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Stoyan, Y.G., Zlotnik, M.V., Chugay, A.: Solving an optimization packing problem of circles and non-convex polygons with rotations into a multiply connected region. J. Oper. Res. Soc. 63(3), 379–391 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the anonymous referees whose comments helped to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. D. Lobato.

Additional information

This work was supported by PRONEX-CNPq/FAPERJ E-26/111.449/2010-APQ1, FAPESP (Grants 2010/10133-0, 2013/03447-6, 2013/05475-7, 2013/07375-0, and 2012/23916-8), and CNPq (Grants 309517/2014-1, 303750/2014-6).

Appendix: Derivatives

Appendix: Derivatives

The computation of the derivatives of the function defined in (33) is nontrivial. That is because this function depends on the functions \(\mathcal {X}\) and \(\mathcal {U}\) whose values are given by the solution of an optimization problem. Firstly, we will show the derivatives of the terms that compose the function defined in (33) in terms of the derivatives of the functions \(\mathcal {X}\) and \(\mathcal {U}\). Next, we will show how to compute the derivatives of the functions \(\mathcal {X}\) and \(\mathcal {U}\). To simplify the notation, we will denote by \(\mathcal {X}_{ij}\) the value \(\mathcal {X}(c_i,c_j,\Omega _i,\Omega _j;P_i,P_j)\) and by \(\mathcal {U}_{ij}\) the value \(\mathcal {U}(c_i,c_j,\Omega _i,\Omega _j;P_i,P_j)\).

1.1 First order derivatives

Let \(i,j \in \{1,\dots ,m\}\) such that \(i < j\). We have that \(\mathcal {X}(c_i,c_j,\Omega _i,\Omega _j;P_i,P_j)\) is a solution to the problem

$$\begin{aligned} \begin{array}{ll} \text {minimize} &{} \frac{1}{2}\Big \Vert x - c_{i}^{ij}\Big \Vert ^2\\ \text {subject to} &{} x^{\top } S_{ij} x = 1, \end{array} \end{aligned}$$
(38)

where \(c_{i}^{ij} = P_i^{-\frac{1}{2}}Q_i^{\top }(c_i-c_j)\), and \(\mathcal {U}(c_i,c_j,\Omega _i,\Omega _j;P_i,P_j)\) is the corresponding Lagrange multiplier. According to the Karush–Kuhn–Tucker first-order necessary conditions for problem (38), we have

$$\begin{aligned}&\mathcal {X}_{ij} + \mathcal {U}_{ij} S_{ij}\mathcal {X}_{ij} - c_{i}^{ij} = 0\\&{\mathcal {X}_{ij}}^{\top }S_{ij}\mathcal {X}_{ij} - 1 = 0. \end{aligned}$$

Thus, by defining the function \(F: \mathbb {R}^{n} \times \mathbb {R}^{n} \times \mathbb {R}^{q} \times \mathbb {R}^{q} \rightarrow \mathbb {R}^{n+1}\) as

$$\begin{aligned} F(c_i,c_j,\Omega _i,\Omega _j) = \left[ \begin{array}{c} \mathcal {X}_{ij} + \mathcal {U}_{ij} S_{ij}\mathcal {X}_{ij} - c_{i}^{ij}\\ \frac{1}{2}\left( {\mathcal {X}_{ij}}^{\top }S_{ij}\mathcal {X}_{ij} - 1\right) \end{array} \right] , \end{aligned}$$
(39)

we have that \(F(c_i,c_j,\Omega _i,\Omega _j) = 0\) for all \(c_i,c_j \in \mathbb {R}^n\) and for all \(\Omega _i,\Omega _j \in \mathbb {R}^q\). That is, F is an identically zero function. Therefore, we have that the derivative of function F is also an identically zero function. Hence, for each variable v of the function F and for each component \(\ell \in \{1,\dots ,n+1\}\) of F, we have

$$\begin{aligned} \frac{\text {d}F_{\ell }}{\text {d}v} = \frac{\partial F_{\ell }}{\partial v}\frac{\text {d}v}{\text {d}v} + \frac{\partial F_{\ell }}{\partial \mathcal {U}_{ij}}\frac{\text {d}\mathcal {U}_{ij}}{\text {d}v} + \sum _{k=1}^{n} \frac{\partial F_{\ell }}{\partial [\mathcal {X}_{ij}]_k}\frac{\text {d}[\mathcal {X}_{ij}]_k}{\text {d}v} = 0. \end{aligned}$$
(40)

Once the values of \(\mathcal {X}_{ij}\) and \(\mathcal {U}_{ij}\) are known, we have, for each \(\ell \in \{1,\dots ,n+1\}\), analytical expressions for \(\frac{\partial F_{\ell }}{\partial v}\), \(\frac{\partial F_{\ell }}{\partial \mathcal {U}_{ij}}\), and \(\frac{\partial F_{\ell }}{\partial [\mathcal {X}_{ij}]_k}\) for each \(k \in \{1,\dots ,n\}\). On the other hand, the values of \(\frac{\text {d}\mathcal {U}_{ij}}{\text {d}v}\) and \(\frac{\text {d}[\mathcal {X}_{ij}]_k}{\text {d}v}\) for each \(k \in \{1,\dots ,n\}\) are unknown, but can be computed by solving the linear system provided by (40):

$$\begin{aligned} \begin{bmatrix} \frac{\partial F_{1}}{\partial [\mathcal {X}_{ij}]_1}&\quad \cdots&\quad \frac{\partial F_{1}}{\partial [\mathcal {X}_{ij}]_n}&\quad \frac{\partial F_{1}}{\partial \mathcal {U}_{ij}}\\ \frac{\partial F_{2}}{\partial [\mathcal {X}_{ij}]_1}&\quad \cdots&\quad \frac{\partial F_{2}}{\partial [\mathcal {X}_{ij}]_n}&\quad \frac{\partial F_{2}}{\partial \mathcal {U}_{ij}}\\ \vdots&\quad \vdots&\quad \vdots&\quad \vdots \\ \frac{\partial F_{n+1}}{\partial [\mathcal {X}_{ij}]_1}&\quad \cdots&\quad \frac{\partial F_{n+1}}{\partial [\mathcal {X}_{ij}]_n}&\quad \frac{\partial F_{n+1}}{\partial \mathcal {U}_{ij}}\\ \end{bmatrix} \begin{bmatrix} \frac{\text {d}[\mathcal {X}_{ij}]_1}{\text {d}v}\\ \vdots \\ \frac{\text {d}[\mathcal {X}_{ij}]_n}{\text {d}v}\\ \frac{\text {d}\mathcal {U}_{ij}}{\text {d}v} \end{bmatrix} = - \begin{bmatrix} \frac{\partial F_{1}}{\partial v}\\ \frac{\partial F_{2}}{\partial v}\\ \vdots \\ \frac{\partial F_{n+1}}{\partial v} \end{bmatrix}. \end{aligned}$$

Then, for each \(i, j \in \{1,\dots ,m\}\) such that \(i < j\), we need to solve \(2(n+q)\) linear systems with \(n+1\) equations and \(n+1\) variables (one linear system for each variable among \(c_i\), \(c_j\), \(\Omega _i\) and \(\Omega _j\)).

Once i and j are fixed, observe that the \(2(n+q)\) linear systems have the same coefficient matrix. The only difference between these systems are their right-hand sides. Thus, in order to solve these linear systems, we can factorize the coefficient matrix only once and then, for each right-hand side, solve the linear system with the coefficient matrix already factorized.

1.2 Second order derivatives

For each variable v of the function F defined in (39) and for each component \(\ell \) of F, we define the function \(G^v_\ell \) as the total derivative of the function \(F_\ell \) with respect to v:

$$\begin{aligned} G^v_\ell (c_i,c_j,\Omega _i,\Omega _j) = \frac{\text {d}F_\ell }{\text {d}v}(c_i,c_j,\Omega _i,\Omega _j). \end{aligned}$$

Since the function F is identically zero, its derivative is also identically zero. Then, for each variable u of the function \(G^v_\ell \), we have

$$\begin{aligned} \frac{\text {d}G^v_{\ell }}{\text {d}u} = \frac{\partial G^v_{\ell }}{\partial u}\frac{\text {d}u}{\text {d}u} + \frac{\partial G^v_{\ell }}{\partial \mathcal {U}_{ij}}\frac{\text {d}\mathcal {U}_{ij}}{\text {d}u} + \sum _{k=1}^{n} \frac{\partial G^v_{\ell }}{\partial [\mathcal {X}_{ij}]_k}\frac{\text {d}[\mathcal {X}_{ij}]_k}{\text {d}u} = 0. \end{aligned}$$
(41)

Next, we present the partial derivatives of the function \(G^v_{\ell }\), that appear in the expression (41). The partial derivative of \(G^v_{\ell }\) with respect to the variable u is given by

$$\begin{aligned} \frac{\partial G^v_{\ell }}{\partial u}= & {} \frac{\partial ^2 F_\ell }{\partial u \partial v} + \frac{\partial ^2 F_\ell }{\partial u \partial \mathcal {U}_{ij}} \frac{\text {d}\mathcal {U}_{ij}}{\text {d}v} + \frac{\partial F_\ell }{\partial \mathcal {U}_{ij}} \frac{\partial }{\partial u}\left( \frac{\text {d}\mathcal {U}_{ij}}{\text {d}v}\right) + \sum _{k=1}^{n} {\frac{\partial ^2 F_\ell }{\partial u \partial [\mathcal {X}_{ij}]_k}} \frac{\text {d}[\mathcal {X}_{ij}]_k}{\text {d}v}\\&+ \sum _{k=1}^{n} \frac{\partial F_\ell }{\partial [\mathcal {X}_{ij}]_k} \frac{\partial }{\partial u}\left( \frac{\text {d}[\mathcal {X}_{ij}]_k}{\text {d}v}\right) . \end{aligned}$$

The partial derivative of \(G^v_{\ell }\) with respect to \(\mathcal {U}_{ij}\) is given by

$$\begin{aligned} \frac{\partial G^v_{\ell }}{\partial \mathcal {U}_{ij}}&= \frac{\partial ^2 F_\ell }{\partial \mathcal {U}_{ij} \partial v} + \frac{\partial ^2 F_\ell }{\partial \mathcal {U}_{ij} \partial \mathcal {U}_{ij}} \frac{\text {d}\mathcal {U}_{ij}}{\text {d}v} + \frac{\partial F_\ell }{\partial \mathcal {U}_{ij}} \frac{\partial }{\partial \mathcal {U}_{ij}}\left( \frac{\text {d}\mathcal {U}_{ij}}{\text {d}v}\right) \\&\quad +\sum _{k=1}^{n} {\frac{\partial ^2 F_\ell }{\partial \mathcal {U}_{ij} \partial [\mathcal {X}_{ij}]_k}} \frac{\text {d}[\mathcal {X}_{ij}]_k}{\text {d}v} + \sum _{k=1}^{n} \frac{\partial F_\ell }{\partial [\mathcal {X}_{ij}]_k} \frac{\partial }{\partial \mathcal {U}_{ij}}\left( \frac{\text {d}[\mathcal {X}_{ij}]_k}{\text {d}v}\right) \\&= \frac{\partial ^2 F_\ell }{\partial \mathcal {U}_{ij} \partial v} + \sum _{k=1}^{n} {\frac{\partial ^2 F_\ell }{\partial \mathcal {U}_{ij} \partial [\mathcal {X}_{ij}]_k}} \frac{\text {d}[\mathcal {X}_{ij}]_k}{\text {d}v}. \end{aligned}$$

Finally, the partial derivative of \(G^v_{\ell }\) with respect to \(\mathcal {X}_{ij}\) is given by

$$\begin{aligned} \frac{\partial G^v_{\ell }}{\partial [\mathcal {X}_{ij}]_t}&= \frac{\partial ^2 F_\ell }{\partial [\mathcal {X}_{ij}]_t \partial v} + \frac{\partial ^2 F_\ell }{\partial [\mathcal {X}_{ij}]_t \partial \mathcal {U}_{ij}} \frac{\text {d}\mathcal {U}_{ij}}{\text {d}v} + \frac{\partial F_\ell }{\partial \mathcal {U}_{ij}} \frac{\partial }{\partial [\mathcal {X}_{ij}]_t}\left( \frac{\text {d}\mathcal {U}_{ij}}{\text {d}v}\right) \\&\quad + \sum _{k=1}^{n} {\frac{\partial ^2 F_\ell }{\partial [\mathcal {X}_{ij}]_t \partial [\mathcal {X}_{ij}]_k}} \frac{\text {d}[\mathcal {X}_{ij}]_k}{\text {d}v} + \sum _{k=1}^{n} \frac{\partial F_\ell }{\partial [\mathcal {X}_{ij}]_k} \frac{\partial }{\partial [\mathcal {X}_{ij}]_t}\left( \frac{\text {d}[\mathcal {X}_{ij}]_k}{\text {d}v}\right) \\&= \frac{\partial ^2 F_\ell }{\partial [\mathcal {X}_{ij}]_t \partial v} + \frac{\partial ^2 F_\ell }{\partial [\mathcal {X}_{ij}]_t \partial \mathcal {U}_{ij}} \frac{\text {d}\mathcal {U}_{ij}}{\text {d}v} + \sum _{k=1}^{n} {\frac{\partial ^2 F_\ell }{\partial [\mathcal {X}_{ij}]_t \partial [\mathcal {X}_{ij}]_k}} \frac{\text {d}[\mathcal {X}_{ij}]_k}{\text {d}v}. \end{aligned}$$

The simplifications in the expressions of the derivatives of \(G^v_{\ell }\) with respect to \(\mathcal {U}_{ij}\) and \(\mathcal {X}_{ij}\) come from the removal of null elements.

Considering that the values of the first order derivatives of the function F are known, the equation (41) provides the following linear system

$$\begin{aligned} \begin{bmatrix} \frac{\partial F_{1}}{\partial [\mathcal {X}_{ij}]_1}&\quad \cdots&\quad \frac{\partial F_{1}}{\partial [\mathcal {X}_{ij}]_n}&\quad \frac{\partial F_{1}}{\partial \mathcal {U}_{ij}}\\ \frac{\partial F_{2}}{\partial [\mathcal {X}_{ij}]_1}&\quad \cdots&\quad \frac{\partial F_{2}}{\partial [\mathcal {X}_{ij}]_n}&\quad \frac{\partial F_{2}}{\partial \mathcal {U}_{ij}}\\ \vdots&\quad \vdots&\quad \vdots&\quad \vdots \\ \frac{\partial F_{n+1}}{\partial [\mathcal {X}_{ij}]_1}&\quad \cdots&\quad \frac{\partial F_{n+1}}{\partial [\mathcal {X}_{ij}]_n}&\quad \frac{\partial F_{n+1}}{\partial \mathcal {U}_{ij}}\\ \end{bmatrix} \begin{bmatrix} \frac{\partial }{\partial u}\left( \frac{\text {d}[\mathcal {X}_{ij}]_1}{\text {d}v}\right) \\ \vdots \\ \frac{\partial }{\partial u}\left( \frac{\text {d}[\mathcal {X}_{ij}]_n}{\text {d}v}\right) \\ \frac{\partial }{\partial u}\left( \frac{\text {d}\mathcal {U}_{ij}}{\text {d}v}\right) \end{bmatrix} = - \begin{bmatrix} b_{1}^{u,v}\\ b_{2}^{u,v}\\ \vdots \\ b_{n+1}^{u,v} \end{bmatrix} \end{aligned}$$

for each variable u and for each variable v of the function F. The components of the right-hand side of this system are given by

$$\begin{aligned} b_{\ell }^{u,v} = \frac{\partial ^2 F_\ell }{\partial u \partial v} + \frac{\partial ^2 F_\ell }{\partial u \partial \mathcal {U}_{ij}} \frac{\text {d}\mathcal {U}_{ij}}{\text {d}v} + \sum _{k=1}^{n} {\frac{\partial ^2 F_\ell }{\partial u \partial [\mathcal {X}_{ij}]_k}} \frac{\text {d}[\mathcal {X}_{ij}]_k}{\text {d}v} + \frac{\partial G^v_{\ell }}{\partial \mathcal {U}_{ij}}\frac{\text {d}\mathcal {U}_{ij}}{\text {d}u} + \sum _{k=1}^{n} \frac{\partial G^v_{\ell }}{\partial [\mathcal {X}_{ij}]_k}\frac{\text {d}[\mathcal {X}_{ij}]_k}{\text {d}u} \end{aligned}$$

for each \(\ell \in \{1,\dots ,n+1\}\). Notice that the coefficient matrix of this linear system does not depend on the variables u and v. Therefore, for each \(i,j \in \{1,\dots ,m\}\) such that \(i < j\), we have \((n+q)(2(n+q) + 1)\) linear systems (one for each pair of variables u and v of the function F) with \(n+1\) variables each one, and all of them have the same coefficient matrix.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birgin, E.G., Lobato, R.D. & Martínez, J.M. A nonlinear programming model with implicit variables for packing ellipsoids. J Glob Optim 68, 467–499 (2017). https://doi.org/10.1007/s10898-016-0483-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-016-0483-8

Keywords

Navigation