Skip to main content
Log in

Solving linear optimization over arithmetic constraint formula

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Since Balas extended the classical linear programming problem to the disjunctive programming (DP) problem where the constraints are combinations of both logic AND and OR, many researchers explored this optimization problem under various theoretical or application scenarios such as generalized disjunctive programming (GDP), optimization modulo theories (OMT), robot path planning, real-time systems, etc. However, the possibility of combining these differently-described but form-equivalent problems into a single expression remains overlooked. The contribution of this paper is two folded. First, we convert the linear DP/GDP model, linear-arithmetic OMT problem and related application problems into an equivalent form, referred to as the linear optimization over arithmetic constraint formula (LOACF). Second, a tree-search-based algorithm named RS-LPT is proposed to solve LOACF. RS-LPT exploits the techniques of interval analysis and nonparametric estimation for reducing the search tree and lowering the number of visited nodes. Also, RS-LPT alleviates bad construction of search tree by backtracking and pruning dynamically. We evaluate RS-LPT against two most common DP/GDP methods, three state-of-the-art OMT solvers and the disjunctive transformation based method on optimization benchmarks with different types and scales. Our results favor RS-LPT as compared to existing competing methods, especially for large scale cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Armando, A., Ranise, S., Rusinowitch, M.: A rewriting approach to satisfiability procedures. Inf. Comput. 183(2), 140–164 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bagirov, A.M., Ugon, J., Webb, D., Karasözen, B.: Classification through incremental maxmin separability. Pattern Anal. Appl. 14(2), 165–174 (2011)

    Article  MathSciNet  Google Scholar 

  3. Balas, E.: Disjunctive programming: properties of the convex hull of feasible points. Technical report MSRR #348, Carnegie Mellon University, Pittsburgh, PA (1974)

  4. Balas, E.: Disjunctive programming and a hierarchy of relaxations for discrete optimization problems. SIAM J. Algebraic Discrete Methods 6(3), 466–486 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Balas, E.: Disjunctive programming: properties of the convex hull of feasible points. Discrete Appl. Math. 89(1), 3–44 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Balas, E., Tama, J.M., Tind, J.: Sequential convexification in reverse convex and disjunctive programming. Math. Program. 44(1–3), 337–350 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Balinski, M.L.: Integer programming: methods, uses, computations. Manag. Sci. 12(3), 253–313 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  8. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A., Tinelli, C.: Cvc4. In: CAV, pp. 171–177 (2011)

  9. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Handbook of Satisfiability, chap. 26, pp. 825–885. IOS Press, Amsterdam (2009)

  10. Bini, E., Buttazzo, G.C.: The space of rate monotonic schedulability. In: RTSS, pp. 169–178 (2002)

  11. Bjørner, N., Phan, A.D., Fleckenstein, L.: \(\nu z\)—maximal satisfaction with z3. In: Proceedings of International Symposium on Symbolic Computation in Software Science (2014)

  12. Bjørner, N., Phan, A.D., Fleckenstein, L.: \(\nu \)z—an optimizing SMT solver. In: Proceedings of TACAS, pp. 194–199 (2015)

  13. Blair, C.E.: Facial disjunctive programs and sequence of cutting-planes. Discrete Appl. Math. 2(3), 173–179 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  14. Boggs, P.T., Tolle, J.W.: Sequential quadratic programming. Acta Numer. 4(1), 1–51 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  16. Byrd, R.H., Gilbert, J.C., Nocedal, J.: A trust region method based on interior point techniques for nonlinear programming. Math. Program. 89(1), 149–185 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ceria, S., Soares, J.: Convex programming for disjunctive convex optimization. Math. Program. 86(3), 595–614 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, L., Wang, Y., Wu, J., Lyu, Y.: Rate-monotonic optimal design based on tree-like linear prgoramming search. J. Softw. 26(12), 3233–3241 (2015)

    Google Scholar 

  19. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The mathsat5 SMT solver. In: Tools and Algorithms for the Construction and Analysis of Systems, pp. 93–107 (2013)

  20. Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press, Princeton (1965)

    MATH  Google Scholar 

  21. De Moura, L., Bjrner, N.: Z3: An efficient SMT solver. In: Proceedings of TACAS, pp. 337–340 (2008)

  22. De Moura, L., Bjrner, N.: Satisfiability modulo theories: introduction and applications. Commun. ACM 54(9), 69–77 (2011)

    Article  Google Scholar 

  23. Dutertre, B.: Yices 2.2. In: CAV, pp. 737–744 (2014)

  24. Dutertre, B., De Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: CAV, pp. 81–94 (2006)

  25. Fang, S., Li, G.: Solving fuzzy relation equations with a linear objective function. Fuzzy Sets Syst. 103(1), 107–113 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Forsgren, A., Gill, P.E., Wright, M.H.: Interior methods for nonlinear optimization. SIAM Rev. 44(4), 525–597 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ghodousian, A., Khorram, E.: Fuzzy linear optimization in the presence of the fuzzy relation inequality constraints with max–min composition. Inf. Sci. 178(2), 501–519 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gill, P.E., Wong, E.: Sequential quadratic programming methods. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming, pp. 147–224. Springer, Berlin (2012)

  29. Guo, F., Pang, L., Meng, D., Xia, Z.: An algorithm for solving optimization problems with fuzzy relational inequality constraints. Inf. Sci. 252, 20–31 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jenkyns, T., Stephenson, B.: Fundamentals of Discrete Math for Computer Science. Springer, London (2012)

    MATH  Google Scholar 

  31. Jeroslow, R.G.: Logic-Based Decision Support: Mixed Integer Model Formulation. Elsevier, Amsterdam (1989)

    MATH  Google Scholar 

  32. Jeroslow, R.G., Lowe, J.K.: Modeling with integer variables. Math. Program. Stud. 22, 167–184 (1984)

    Article  MATH  Google Scholar 

  33. Kirjner-Neto, C., Polak, E.: On the conversion of optimization problems with max–min constraints to standard optimization problems. SIAM J. Optim. 8(4), 887–915 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lee, S., Grossmann, I.E.: New algorithms for nonlinear generalized disjunctive programming. Comput. Chem. Eng. 24(9), 2125–2141 (2000)

    Article  Google Scholar 

  35. Li, Y., Albarghouthi, A., Kincaid, Z., Gurfinkel, A., Chechik, M.: Symbolic optimization with SMT solvers. In: Proceedings of ACM SIGPLAN-SIGACT symposium on POPL, pp. 607–618 (2014)

  36. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-time environment. J. ACM 20(1), 46–61 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  37. Liu, J., Wang, Y., Xing, J.: Study of optimization problems with logic or relationships and its application to real-time system design. J. Softw. 17(7), 1641–1649 (2006)

    Article  Google Scholar 

  38. Min-Allah, N., Khan, S.U., Wang, Y.: Optimal task execution times for periodic tasks using nonlinear constrained optimization. J. Supercomput. 59(3), 1120–1138 (2012)

    Article  Google Scholar 

  39. Miyagi, H., Kinjo, I., Fan, Y.: Qualified decision-making using the fuzzy relation inequalities. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, vol. 2, pp. 2014–2018. IEEE (1998)

  40. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to interval analysis. Society for Industrial and Applied Mathematics, Philadelphia, USA (2009)

  41. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM TOPLAS 1(2), 245–257 (1979)

    Article  MATH  Google Scholar 

  42. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving sat and sat modulo theories: from an abstract davis-putnam-logemann-loveland procedure to DPLL(T). J. ACM 53(6), 937–977 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Raman, R., Grossmann, I.E.: Modelling and computational techniques for logic based integer programming. Comput. Chem. Eng. 18(7), 563–578 (1994)

    Article  Google Scholar 

  44. Sawaya, N., Grossmann, I.E.: A cutting plane method for solving linear generalized disjunctive programming problems. Comput. Chem. Eng. 29(9), 1891–1913 (2005)

    Article  Google Scholar 

  45. Sawaya, N., Grossmann, I.E.: A hierarchy of relaxations for linear generalized disjunctive programming. Eur. J. Oper. Res. 216(1), 70–82 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sebastiani, R., Tomasi, S.: Optimization in smt with \({\cal{LA}} ({\mathbb{Q}})\) cost functions. In: Automated Reasoning, pp. 484–498 (2012)

  47. Sebastiani, R., Tomasi, S.: Optimization modulo theories with linear rational costs. ACM Trans. Comput. Logic 16(2), 12 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  48. Sheather, S.J., Jones, M.C.: A reliable data-based bandwidth selection method for kernel density estimation. J. R. Stat. Soc. (Ser. B Methodol). 53(3), 683–690 (1991)

  49. Sherali, H.D., Shetty, C.M.: Optimization with Disjunctive Constraints. Springer, Berlin (2012). vol. 181

    MATH  Google Scholar 

  50. Sörensson, N., Een, N.: Minisat v1.13—a sat solver with conflict-clause minimization. In: SAT Poster (2005)

  51. Stubbs, R.A., Mehrotra, S.: A branch-and-cut method for 0–1 mixed convex programming. Math. Program. 86(3), 515–532 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  52. Su, C., Guo, F.: Solving interval-valued fuzzy relation equations with a linear objective function. In: Proceedings of the Sixth International Conference on Fuzzy Systems and Knowledge Discovery, vol. 4, pp. 380–385. IEEE (2009)

  53. Türkay, M., Grossmann, I.E.: Logic-based minlp algorithms for the optimal synthesis of process networks. Comput. Chem. Eng. 20(8), 959–978 (1996)

    Article  Google Scholar 

  54. Vecchietti, A., Grossmann, I.E.: Computational experience with logmip solving linear and nonlinear disjunctive programming problems. In: Proceedings of FOCAPD, pp. 587–590 (2004)

  55. Wang, H., Wang, C.: A fixed-charge model with fuzzy inequality constraints composed by max-product operator. Comput. Math. Appl. 36(7), 23–29 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  56. Wang, Y., Lane, D.M.: Solving a generalized constrained optimization problem with both logic and and or relationships by a mathematical transformation and its application to robot motion planning. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 30(4), 525–536 (2000)

    Article  Google Scholar 

  57. Wang, Y., Liu, H., Li, M., Wang, Q., Zhou, J., Cartmell, M.P.: A real-time path planning approach without the computation of cspace obstacles. Robotica 22(2), 173–187 (2004)

    Article  Google Scholar 

  58. Wasserman, L.: All of Nonparametric Statistics. Springer, New York (2006). vol. 4

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the anonymous referees for their helpful comments and suggestions for improving the paper. This work is jointly supported by the Natural Science Foundation of China under Grants61303057, 61379048 and 61672508, and the CAS/SAFEA International Partnership Program for Creative Research Teams.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongji Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Lyu, Y., Wang, C. et al. Solving linear optimization over arithmetic constraint formula. J Glob Optim 69, 69–102 (2017). https://doi.org/10.1007/s10898-017-0499-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-017-0499-8

Keywords

Navigation