Skip to main content
Log in

On convergence rate of a rectangular partition based global optimization algorithm

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The convergence rate of a rectangular partition based algorithm is considered. A hyper-rectangle for the subdivision is selected at each step according to a criterion rooted in the statistical models based theory of global optimization; only the objective function values are used to compute the criterion of selection. The convergence rate is analyzed assuming that the objective functions are twice- continuously differentiable and defined on the unit cube in d-dimensional Euclidean space. An asymptotic bound on the convergence rate is established. The results of numerical experiments are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Floudas, Ch.: Deterministic Global Optimization: Theory, Algorithms and Applications. Kluwer, Dordrecht (2000)

    Book  Google Scholar 

  2. Horst, R., Pardalos, A.P., Thoai, N.: Introduction to Global Optimization. Kluwer, Dordrecht (1995)

    MATH  Google Scholar 

  3. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  4. Pinter, J.: Global Optimization in Action. Kluwer, Dordrecht (1996)

    Book  MATH  Google Scholar 

  5. Sergeyev, Y.D.: Multidimensional global optimization using the first derivatives. Comput. Maths. Math. Phys. 39(5), 743–752 (1999)

    MathSciNet  MATH  Google Scholar 

  6. Sergeyev, Y.D., Kvasov, D.E.: A deterministic global optimization using smooth diagonal auxiliary functions. Commun. Nonlinear Sci. Numer. Simul. 21, 99–111 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sergeyev, Y.D., Kvasov, D.E.: Deterministic Global Optimization, An Introduction to the Diagonal Approach. Springer, New York (2017)

    Book  MATH  Google Scholar 

  8. Mockus, J.: Bayesian Approach to Global Optimization. Kluwer, Dordrecht (1988)

    MATH  Google Scholar 

  9. Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-convex Constraints: Sequential and Parallel Algorithms. Kluwer, Dordrecht (2000)

    Book  MATH  Google Scholar 

  10. Zhigljavsky, A.: Theory of Global Random Search. Kluwer, Dordrecht (1991)

    Book  Google Scholar 

  11. Žilinskas, A.: A statistical model-based algorithm for black-box multi-objective optimisation. Int. J. Syst. Sci. 45(1), 82–92 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Žilinskas, A., Zhigljavsy, A.: Stochastic global optimization: a review on the occasion of 25 years of Informatica. Informatica 27, 229–256 (2016)

    Article  Google Scholar 

  13. Hooker, J.: Testing heuristics: we have it all wrong. J. Heuristics 11, 33–42 (1995)

    Article  MATH  Google Scholar 

  14. Pardalos, P., Romeijn, H.: Handbook of Global Optimization, vol. 2. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  15. Rastrigin, L.: Statistical Models of Search. Nauka (2013) (in Russian)

  16. Paulavičius, R., Sergeyev, Y., Kvasov, D., Z̆ilinskas, J.: Globally-biased DISIMPL algorithm for expensive global optimization. J. Glob. Optim. 59, 545567 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Žilinskas, A., Z̆ilinskas, J.: A hybrid global optimization algorithm for non-linear leist squares regression. J. Glob. Optim. 56, 265–277 (2013)

    Article  Google Scholar 

  18. Calvin, J., Žilinskas, A.: A one-dimensional P-algorithm with convergence rate \(o(n^{-3+\delta })\) for smooth functions. J. Optim. Theory Appl. 106, 297–307 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Calvin, J.M.: An adaptive univariate global optimization algorithm and its convergence rate under the Wiener measure. Informatica 22, 471–488 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Calvin, J.M., Chen, Y., Z̆ilinskas, A.: An adaptive univariate global optimization algorithm and its convergence rate for twice continuously differentiable functions. J. Optim. Theory Appl. 155, 628–636 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Calvin, J.M., Z̆ilinskas, A.: On a global optimization of bivariate smooth functions. J. Optim. Theory Appl. 163, 528–547 (2014)

    Article  MathSciNet  Google Scholar 

  22. Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems, II. Tracts in Mathematics, vol. 12. European Mathematical Society, Zürich (2010)

    Book  MATH  Google Scholar 

  23. Huyer, W., Neumaier, A.: Global optimization by multi-level coordinate search. J. Glob. Optim. 14, 331–355 (1999)

    Article  MATH  Google Scholar 

  24. Jones, D.R., Perttunen, C.D., Stuckman, C.D.: Lipschitzian optimization without the lipschitz constant. J. Optim. Theory Appl. 79, 157–181 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sergeyev, Y., Kvasov, D.: Global search based on efficicient diagonal partitions and set of Lipschitz constants. SIAM J. Optim. 16(3), 910–937 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Scholz, D.: Deterministic Global Optimization: Geometric Branch-and-Bound Methods and their Applications. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  27. Paulavičius, R., Z̆ilinskas, J.: Simplicial Global Optimization. Springer Briefs in Optimization. Springer, Berlin (2014)

    Book  Google Scholar 

  28. Novak, E.: Deterministic and Stochastic Error Bounds in Numerical Analysis, Lecture Notes in Mathematics, vol. 1349. Springer, Berlin (1988)

    Book  Google Scholar 

  29. Zhigljavsy, A., Žilinskas, A.: Stochastic Global Optimization. Springer, Berlin (2008)

    Google Scholar 

  30. Waldron, S.: Sharp error estimates for multivariate positive linear operators which reproduce the linear polynomials. In: Chui, C.K., Schumaker, L.L. (eds.) Approximation Theory IX, vol. 1, pp. 339–346. Vanderbilt University Press, Nashville (1998)

    Google Scholar 

  31. McGeoch, C.: Experimental analysis of algorithms. In: Pardalos, P., Romeijn, E. (eds.) Handbook of Global Optimization, vol. 2, pp. 489–514. Kluwer, Dodrecht (2002)

    Chapter  Google Scholar 

  32. More, J., Wild, S.: Benchmarking derivative-free optimization algorithms. SIAM J. Optim. 20, 172–191 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. GSL, GNU Scientific Library. https://www.gnu.org/software/gsl/. Accessed on 1 Aug 2016

  34. Cgal, Computational Geometry Algorithms Library. http://www.cgal.org. Accessed on 15 Oct 2014

  35. Sobol, I.: On the systematic search in a hypercube. SIAM J. Numer. Anal. 16, 790793 (1979)

    MathSciNet  MATH  Google Scholar 

  36. Dixon, L.C.W., Szegö, G.P. (eds.): Towards Global Optimization II. North Holland, New York (1978)

    Google Scholar 

  37. Branin, F.: Widely convergent method for finding multiple solutions of simultaneous nonlinear equations. IBM J. Res. Dev. 16(5), 504–522 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hansen, P., Jaumard, B.: Lipshitz optimization. In: Horst, R., Pardalos, P. (eds.) Handbook of Global Optimization, pp. 407–493. Kluwer, Dodrecht (1995)

    Chapter  Google Scholar 

  39. Liu, H., Xu, S., Ma, Y., Wang, X.: Global optimization of expensive black box functions using potential lipschitz constants and response surfaces. J. Glob. Optim. 63, 229251 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the reviewers for valuable hints and remarks which facilitated the improvement of presentation of our results. The work of J. Calvin was supported by the National Science Foundation under Grant No. CMMI-0926949 and the work of G. Gimbutienė and A. Žilinskas was supported by the Research Council of Lithuania under Grant No. P-MIP-17-61.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antanas Žilinskas.

Appendices

Appendix A

This appendix contains the proof of Lemma 2.

Denote the eigenvalues of \(D^2f(x^*)\) by

$$\begin{aligned} \theta _1\ge \theta _2\ge \cdots \ge \theta _d >0. \end{aligned}$$

Then by Taylor’s theorem (x a column vector),

$$\begin{aligned} f(x^*+x)-f(x^*) = \frac{1}{2} x^T D^2f(x^*) x + o(\left\| x\right\| ^2). \end{aligned}$$

Since \(D^2f(x^*)\) is symmetric positive definite, we can express it as

$$\begin{aligned} D^2f(x^*) = V\varTheta V^T \end{aligned}$$

for an orthogonal matrix V and diagonal matrix \(\varTheta =\mathrm{diag}(\theta _1, \theta _2,\ldots ,\theta _d)\). Then

$$\begin{aligned} D^2f(x^*) = V \varTheta ^{1/2}\varTheta ^{1/2} V^T \end{aligned}$$

and

$$\begin{aligned} f(x^*+x)-f^* = \frac{1}{2} x^T V \varTheta ^{1/2}\varTheta ^{1/2} V^T x + o(\left\| x\right\| ^2) = \frac{1}{2} \left\| Tx\right\| ^2 + o(\left\| x\right\| ^2), \end{aligned}$$
(24)

where \(Tx \equiv \varTheta ^{1/2}V^Tx\).

Let \(B_c^d(0)\) denote the ball of radius c, centered at 0, in \(\mathbb {R}^d\). For \(c>0\), let

$$\begin{aligned} f_c \equiv \inf \{f(x^*+x):x\notin B_c^d(0)\}, \end{aligned}$$

which is positive since the minimizer is assumed unique and f is continuous. Then

$$\begin{aligned} \int _{[0,1]^d\setminus B_c^d(x^*)} \frac{dx}{(f(x)-f(x^*)+\epsilon )^{d/2}}\le f_c^{-d/2} \end{aligned}$$

and

$$\begin{aligned} \int _{[0,1]^d}\frac{dx}{(f(x)-f(x^*)+\epsilon )^{d/2}}&\le f_c^{-d/2}+\int _{B_c^d(0)}\frac{dx}{\left( f(x^*+x)-f(x^*)+\epsilon \right) ^{d/2}}\\&= f_c^{-d/2}+\int _{B_c^d(0)}\frac{dx}{\left( \frac{1}{2}\left\| Tx\right\| ^2+\epsilon +o(\left\| x\right\| ^2)\right) ^{d/2}} \end{aligned}$$

by (24). For any \(\eta \in ]0,1/2]\), we can choose \(c>0\) small enough so that

$$\begin{aligned} \frac{1}{2}\left\| Tx\right\| ^2+\epsilon +o(\left\| x\right\| ^2)\ge \left( \frac{1}{2}-\eta \right) \left\| Tx\right\| ^2+\epsilon . \end{aligned}$$

Therefore,

$$\begin{aligned} \int _{[0,1]^d} \frac{dx}{\left( f(x) - f(x^*) +\epsilon \right) ^{d/2}} \le \int _{B^d_c(0)} \frac{dx}{\left( (1/2-\eta ) \left\| Tx\right\| ^2 +\epsilon \right) ^{d/2}} +O(1) \end{aligned}$$
(25)

as \(\epsilon \downarrow 0\), and similarly

$$\begin{aligned} \int _{[0,1]^d} \frac{dx}{\left( f(x) - f(x^*) +\epsilon \right) ^{d/2}} \ge \int _{B^d_c(0)} \frac{dx}{\left( (\frac{1}{2}+\eta )\left\| Tx\right\| ^2 +\epsilon \right) ^{d/2}} +O(1). \end{aligned}$$
(26)

Using the orthogonality of V, for any \(b>0\),

$$\begin{aligned} \int _{B^d_c(0)} \frac{dx}{\left( b\left\| Tx\right\| ^2 +\epsilon \right) ^{d/2}}&= \int _{V(B^d_c(0))} \frac{dx}{\left( b\left\| \varTheta ^{1/2}x\right\| ^2 +\epsilon \right) ^{d/2}}\nonumber \\&= \int _{B^d_c(0)} \frac{dx}{\left( b\left\| \varTheta ^{1/2}x\right\| ^2 +\epsilon \right) ^{d/2}} \nonumber \\&= \int _{E(c,b,\epsilon )} \frac{dy}{\left( \left\| y\right\| ^2 +1\right) ^{d/2}}\frac{1}{b^{d/2}\left( \prod _{i=1}^d \theta _i\right) ^{1/2}}, \end{aligned}$$
(27)

where \(E(c,b,\epsilon )\) is the image of the ball of radius c under the map \(x_i \mapsto x_i(\theta _ib/\epsilon )^{1/2}\), and we used the substitution \(y_i \leftarrow x_i\left( \theta _i b/\epsilon \right) ^{1/2}\) in the last equation. Therefore,

$$\begin{aligned} B^d_{c\sqrt{b\theta _d/\epsilon }}(0) \subset E(c,b,\epsilon ) \subset B^d_{c\sqrt{b\theta _1/\epsilon }}(0), \end{aligned}$$

and (27) gives the bounds

$$\begin{aligned}&\int _{ B^d_{c\sqrt{b\theta _d/\epsilon }}(0) } \frac{dy}{\left( \left\| y\right\| ^2 +1\right) ^{d/2}}\frac{1}{b^{d/2}\left( \prod _{i=1}^d \theta _i\right) ^{1/2}} \le \int _{B^d_c(0)} \frac{dx}{\left( b\left\| Tx\right\| ^2 +\epsilon \right) ^{d/2}}\\&\quad \le \int _{B^d_{c\sqrt{b\theta _1/\epsilon }}(0)} \frac{dy}{\left( \left\| y\right\| ^2 +1\right) ^{d/2}}\frac{1}{b^{d/2}\left( \prod _{i=1}^d \theta _i\right) ^{1/2}}. \end{aligned}$$

Let \(\mathcal {V}(x)=\pi ^{d/2}\varGamma (d/2 +1)^{-1}x^d\) denote the volume of the d-dimensional ball of radius x. For \(z>0\),

$$\begin{aligned} \int _{B^d_z(0)}\frac{dx}{\left( \left\| x\right\| ^2 + 1\right) ^{d/2}}= & {} \int _{r=0}^z \frac{d\mathcal {V}(r)}{(r^2+1)^{d/2}} =\frac{d \pi ^{d/2}}{\varGamma (d/2 +1)} \int _{r=0}^z \frac{r^{d-1}dr}{(r^2+1)^{d/2}}\\= & {} \frac{d \pi ^{d/2}}{\varGamma (d/2 +1)} \int _{r=0}^z \frac{1}{r}\left( \frac{r^2}{r^2+1}\right) ^{d/2}dr. \end{aligned}$$

For \(z>1\),

$$\begin{aligned} \int _{r=0}^z \frac{1}{r}\left( \frac{r^2}{r^2+1}\right) ^{d/2}dr < \int _{r=1}^z \frac{1}{r}dr = \log (z), \end{aligned}$$
(28)

and for \(A<z\),

$$\begin{aligned}&\int _{r=0}^z \frac{1}{r}\left( \frac{r^2}{r^2+1}\right) ^{d/2}dr > \left( \frac{A^2}{A^2+1}\right) ^{d/2}\int _{r=A}^z \frac{1}{r} dr\\&\quad = \left( \frac{A^2}{A^2+1}\right) ^{d/2} \left( \log (z)-\log (A)\right) . \end{aligned}$$

Combining this inequality with (28) we conclude that

$$\begin{aligned} \lim _{z\uparrow \infty } \frac{ \int _{r=0}^z \frac{1}{r}\left( \frac{r^2}{r^2+1}\right) ^{d/2} dr}{\log (z)} =1. \end{aligned}$$
(29)

Set

$$\begin{aligned} C_d = \frac{d\pi ^{d/2}}{\varGamma (1+d/2)} \end{aligned}$$

and

$$\begin{aligned} G_d(c) = \int _{r=0}^c\frac{r^{d-1}dr}{(r^2+1)^{d/2}}. \end{aligned}$$

By (29), \(G_d(c)/\log (c)\rightarrow 1\) as \(c\uparrow \infty \). For any \(b>0\), we have the bounds

$$\begin{aligned}&{b^{-d/2}\left( \prod _{i=1}^d\theta _i\right) ^{-1/2}} C_d G_d\left( c\sqrt{b\theta _d/\epsilon }\right) \le \int _{B^d_c(0)} \frac{dx}{\left( b\left\| Tx\right\| ^2 +\epsilon \right) ^{d/2}}\\&\quad \le {b^{-d/2}\left( \prod _{i=1}^d\theta _i\right) ^{-1/2}} C_d G_d\left( c\sqrt{b\theta _1/\epsilon }\right) , \end{aligned}$$

and

$$\begin{aligned}&O(1) + (1/2+\eta ))^{-d/2}\left( \prod _{i=1}^d \theta _i\right) ^{-1/2} C_d G_d\left( c\sqrt{(1/2+\eta )\theta _d/\epsilon }\right) \\&\quad \le {\mathcal I_f}(\epsilon ) \le O(1) + (1/2-\eta )^{-d/2}\left( \prod _{i=1}^d \theta _i\right) ^{-1/2} C_d G_d\left( c\sqrt{(1/2-\eta )\theta _1/\epsilon }\right) . \end{aligned}$$

Since \(\eta >0\) is arbitrary, the fact that \(G_d(c)/\log (c)\rightarrow 1\) as \(c\uparrow \infty \) completes the proof.

Appendix B

This appendix contains the proofs of the lemmas upon which the proof of Theorem 1 are based.

Proof of Lemma 3

Let \(m\le n\) be the last time before n that the smallest hyper-rectangle was about to be split, so \(v_m = 2v_n\) and by (5),

$$\begin{aligned} \rho ^m\le \frac{1}{\lambda \log (1/v_m)} = \frac{1}{\lambda \log (1/2v_n)}. \end{aligned}$$

Note that \(m\ge n_0\) by definition of \(n_2\).

We will show by induction that

$$\begin{aligned} \rho ^{m+k} \le \frac{2}{\lambda \log (1/v_{m+k})} \end{aligned}$$
(30)

for \(k\in \{1,2,\ldots ,n-m\}\), if the hyper-rectangle that the algorithm is subdividing at iteration \(m+k\) has not been previously subdivided since time m. At other times the bound is twice as large.

Let us first consider \(\{\rho ^{m+1}_i: i\le m+1\}\). Suppose that i is the split hyper-rectangle at time m, and let j denote a non-split hyper-rectangle, so \(\rho ^m_j \le \rho _i^m\). Then there exists a point \(c_j\in R_j\) such that

$$\begin{aligned} \rho ^{m+1}_j&= \frac{\left| R_j\right| }{\left( L_{m}(c_j)-M_{m+1} + g(v_{m+1})\right) ^{d/2} }\\&\le \left( \frac{g(2v_n)}{g(v_n)}\right) ^{d/2} \frac{\left| R_j\right| }{\left( L_{m}(c_j)-M_{m} + g(2v_{n})\right) ^{d/2} }\ \ \text {since}~ g(2v_n)>g(v_n)\\&= \left( \frac{g(2v_n)}{g(v_n)}\right) ^{d/2} \rho ^m_j \le \left( 2 \frac{\log (1/2v_n)}{\log (1/v_n)}\right) \frac{1}{\lambda \log (1/v_m)} \ \ \text {by }~(5)\\&= 2 \frac{\log (1/2v_n)}{\log (1/v_n)}\frac{1}{\lambda \log (1/2v_n)} = \frac{2}{\lambda \log (1/v_{n})} = \frac{2}{\lambda \log (1/v_{m+1})}. \end{aligned}$$

Next consider a child of the split subrectangle i. Since we are splitting the smallest subrectangle, \(v_m = 2v_n\), and there exists a point \(c_i\in R_i\) such that (supposing that one child has index i at time \(m+1\))

$$\begin{aligned} \rho ^{m+1}_i = \frac{\left| R_i\right| /2}{\left( L_{m{+1}}(c_i)-M_{m+1} + g(v_{m+1})\right) ^{d/2} } \le \frac{v_{m+1}}{g(v_{m+1})^{d/2}} = \frac{1}{\lambda \log (1/v_{m+1})}. \end{aligned}$$

We have established the base case for the induction. Now consider iteration \(m+k+1\), \(1\le k<n-m\). For the induction hypothesis, assume that

$$\begin{aligned} \rho _i^{m+k} \le \frac{2}{\lambda \log (1/v_{n})} \end{aligned}$$

if hyper-rectangle i has not been split since time m and

$$\begin{aligned} \rho _i^{m+k} \le \frac{4}{\lambda \log (1/v_{n})} \end{aligned}$$

if hyper-rectangle i has been split since time m.

Suppose that the most promising hyper-rectangle at iteration \(m+k+1\) is subrectangle \(R_j=\prod _{i=1}^d[a_i,b_i]\),

$$\begin{aligned} \rho ^{m+k+1} = \rho ^{m+k+1}_j = \int _R \frac{ds}{(L_{m+k+1}(s)-M_{m+k+1}+g(v_n))^{d/2}}. \end{aligned}$$

Assume that this hyper-rectangle has not been split since time m. Let us suppose that during this interval (between m and the next time that the smallest hyper-rectangle is split) R is split r times, and denote by \(L^\prime \) the piecewise multilinear function defined over R after the splitting evaluations. Then

$$\begin{aligned} \max _{s\in R}\left| L^\prime (s)-L_{m+k+1}(s)\right| \le \max _{s\in R}\left| f(s)-L_{m+k+1}(s)\right| \le \gamma (s), \end{aligned}$$

where

$$\begin{aligned} \gamma (s) = \frac{1}{2}\sum _{i=1}^d(s-a_i)(b_i-s) \left\| D^2f\right\| _{\infty , R} \le \frac{1}{8} q d \left| R\right| ^{2/d} \left\| D^2f\right\| _{\infty , R} \equiv \hat{\gamma }. \end{aligned}$$

Set

$$\begin{aligned} \overline{\gamma }(s) = \min \{\gamma (s), L_{m+k+1}(s)-M_{m+k+1}\}. \end{aligned}$$

Then, denoting by \(\rho _1\) the sum of the \(\rho \) values for the resulting subrectangles of R at time \(m+k+q\), we have

$$\begin{aligned} \rho _1= & {} \int _R \frac{ds}{(L^\prime (s)-M_{m+k+q}+g(v_n))^{d/2}}\\\le & {} \int _R \frac{ds}{(L_{m+k+1}(s) - \overline{\gamma }(s)-M_{m+k+1}+g(v_n))^{d/2}}\\\le & {} \int _R \frac{ds}{(L_{m+k+1}(s) - M_{m+k+1}+g(v_n)-{\hat{\gamma }})^{d/2}}. \end{aligned}$$

Let

$$\begin{aligned} a+Q(s) = L_{m+k+1}(s)-M_{m+k+1}+g(v_n), \end{aligned}$$

where \(a=\min _{s\in R} L_{m+k+1}(s)-M_n+g(v_n) >0\). Then

$$\begin{aligned} \frac{\rho _1}{\rho _0} \le \frac{ \int _R\frac{ds}{(a+Q(s)-\hat{\gamma })^{d/2}} }{ \int _R\frac{ds}{(a+Q(s))^{d/2}} }. \end{aligned}$$

The latter ratio is maximized by \(Q\equiv 0\), which corresponds to \(\rho _0 = \left| R\right| /a^{d/2}\), and so

$$\begin{aligned} \frac{\rho _1}{\rho _0}&\le \frac{ \int _R\frac{ds}{(a-\hat{\gamma })^{d/2}} }{ \int _R\frac{ds}{(a)^{d/2}} } = \frac{1}{\left( 1-\frac{\hat{\gamma }}{a}\right) ^{d/2}} = \frac{1}{\left( 1-\frac{ \frac{1}{8} q d \left| R\right| ^{2/d} \left\| D^2f\right\| _{\infty , R} }{a}\right) ^{d/2}}\\&\le \frac{1}{\left( 1- \frac{1}{8} q d \rho _0^{2/d} \left\| D^2f\right\| _{\infty , R} \right) ^{d/2}} \le \frac{1}{\left( 1- \frac{1}{8} q d \frac{4\cdot 4^{2/d}}{q d^3 \left\| D^2f\right\| _{\infty , R}} \left\| D^2f\right\| _{\infty , R} \right) ^{d/2}}\\&= \frac{1}{\left( 1- \frac{4^{2/d}}{2d^2 } \right) ^{d/2}} \le 2. \end{aligned}$$

We used the inequalities

$$\begin{aligned}&\rho _0^{2/d}\le \left( \frac{4}{\lambda \log (n)}\right) ^{2/d} \le \left( \frac{4}{\lambda \left( d \left\| D^2f\right\| _{\infty , R} \right) ^{d/2}}\right) ^{2/d}\\&=\frac{\left( \frac{4}{\lambda }\right) ^{2/d}}{d \left\| D^2f\right\| _{\infty , R}} =\frac{4\cdot 4^{2/d}}{q d^3 \left\| D^2f\right\| _{\infty , R}}, \end{aligned}$$

which follows from the induction hypothesis.

We have shown that whenever the algorithm is about to subdivide a hyper-rectangle for the first time since m, \(\rho ^{m+k}\le 2/\lambda \log (m+k)\). After a hyper-rectangle is subdivided, subsequent subdivisions can never result in \(\rho \) more than twice as large.

The proof by induction of (30) is complete. \(\square \)

Proof of Lemma 4

Suppose (to get a contradiction) that \(\left| R_i\right| =v_n^*\), \(\left| R_j\right| =v_n\), and \(v_n^*=4 v_n\), but yet we are about to split hyper-rectangle \(R_j\), resulting in \(v_n^*>4v_n\); that is, \(\rho ^n_j \ge \rho ^n_i\):

$$\begin{aligned} \rho ^n_j = \frac{\left| R_j\right| =v_n}{\left( L_n(c_j)-M_n + g(v_n)\right) ^{d/2} } \ge \frac{\left| R_i\right| =v_n^*=4v_n}{\left( L_n(c_i)-M_n + g(v_n)\right) ^{d/2} } =\rho ^n_i \end{aligned}$$

for some \(c_i\in R_i, c_j\in R_j\). This implies that

$$\begin{aligned} \frac{L_n(c_i)-M_n + g(v_n)}{L_n(c_j)-M_n + g(v_n)} \ge 4^{2/d}. \end{aligned}$$
(31)

But \(L_n(c_j) \ge M_n\) and

$$\begin{aligned} L_n(c_i) \le M_n + \frac{1}{8} q d \left\| D^2f\right\| _{\infty ,R_i}\left| R_i\right| ^{2/d}. \end{aligned}$$

Thus

$$\begin{aligned} L_n(c_i)-L_n(c_j) \le \frac{1}{8} q d \left\| D^2f\right\| _{\infty ,[0,1]^d}v_n^{2/d}4^{2/d}. \end{aligned}$$

This means that

$$\begin{aligned}&\frac{L_n(c_i)-M_n + g(v_n)}{L_n(c_j)-M_n + g(v_n)} = 1+ \frac{L_n(c_i)-L_n(c_j)}{L_n(c_j)-M_n + g(v_n)} \\&\quad = 1+ \frac{L_n(c_i)-L_n(c_j)}{v_n^{2/d}} \frac{v_n^{2/d}}{L_n(c_j)-M_n + g(v_n)} \\&\quad = 1+ \frac{L_n(c_i)-L_n(c_j)}{v_n^{2/d}} (\rho ^n_j)^{2/d} \\&\quad \le 1+ \frac{1}{8} q d \left\| D^2f\right\| _{\infty ,[0,1]^d}\left( 4^{2/d}\right) \left( \frac{4}{\lambda \log (n)}\right) ^{2/d} \\&\quad \le 1+ \frac{1}{8} q d \left\| D^2f\right\| _{\infty ,[0,1]^d}\left( 4^{2/d}\right) \frac{4^{2/d}}{(qd^2/4)\log (n)^{2/d}} \\&\quad \le 1+ \frac{1}{2} q d \left\| D^2f\right\| _{\infty ,[0,1]^d}\left( 4^{2/d}\right) \frac{4^{2/d}}{(qd^2) d\left\| D^2f\right\| _{\infty ,[0,1]^d}}\ \ \text {since}~ n\ge n_2 \\&\quad = 1+ \frac{1}{2d^2} 4^{4/d} < 4^{2/d} \end{aligned}$$

since \(d\ge 2\). But this contradicts (31), and establishes (9).

The proof of (10) follows from

$$\begin{aligned} \frac{\varDelta _n}{g(v_n)}&\le \frac{ \frac{1}{8} q d \left\| D^2f\right\| _{\infty ,R_i}(4 v_n)^{2/d} }{ \frac{1}{4}q d^2\left( v_n \log (1/v_n)\right) ^{2/d} } = \frac{ \left\| D^2f\right\| _{\infty ,R_i}4^{2/d} }{ 2d\left( \log (1/v_n)\right) ^{2/d} } \le \frac{ \left\| D^2f\right\| _{\infty ,R_i}4^{2/d} }{2d\left( \log (n)\right) ^{2/d} }\\&\le \frac{ \left\| D^2f\right\| _{\infty ,R_i}4^{2/d} }{ 2d\cdot d \left\| D^2f\right\| _{\infty ,[0,1]^d}} \le \frac{ 4^{2/d} }{ 2d^2 } \le \frac{2}{d^2}. \end{aligned}$$

\(\square \)

Proof of Lemma 5

Recall that \(R^*_n\) denotes the hyper-rectangle containing \(x^*\) at time n, and that \(\left| R^*_n\right| = v^*_n \le 4 v_n\) by Lemma 4. If h is the minimal edge length of \(R^*_n\), then \(v^*_n = 2^j h^d\) for some \(0 \le j <d\), and the diameter of \(R^*_n\) is less than \(2h\sqrt{d}\). Also \(h = 2^{-j/d}(v^*_n)^{1/d}\). Therefore, for \(s\in R^*_n\),

$$\begin{aligned} L_n(s) -M_n&\le L_n(s)-f(x^*)\\&\le \max _{s\in R_n^*}f(s)-f(x^*)\\&\le \frac{1}{2}\left( 2h\sqrt{d}\right) ^2 \left\| D^2f\right\| _{\infty ,R^*_n}\ \ \text {by Taylor's theorem} \\&= \frac{1}{2}\left( 2\cdot 2^{-j/d}(v^*_n)^{1/d}\sqrt{d}\right) ^2 \left\| D^2f\right\| _{\infty ,R^*_n}\\&\le 2 d (v^*_n)^{2/d} \left\| D^2f\right\| _{\infty ,[0,1]^d}\\&\le 2 d (4v_n)^{2/d} \left( \frac{\log (n)}{d}\right) ^{2/d}\ \ \ \text { by Lemma}~4~\text { and }~n\ge n_2\\&\le 2 d (4v_n)^{2/d} \left( \frac{\log (1/v_n)}{d}\right) ^{2/d} = 2\cdot 4^{2/d} \frac{d}{d^{2/d}}\lambda ^{-\,2/d}g(v_n)\\&= 2\cdot 4^{2/d} \frac{d}{d^{2/d}}\frac{4}{qd^2}g(v_n) < \frac{32}{dq}g(v_n). \end{aligned}$$

Therefore, by the previous inequality

$$\begin{aligned} \rho ^n&\ge \int _{R^*_n}\frac{ds}{\left( L_n(s)-M_n+g(v_n)\right) ^{d/2}} \ge \frac{v^*_n}{\left( \frac{32}{dq}g(v_n)+g(v_n)\right) ^{d/2}}\\&\ge \frac{v_n}{\lambda v_n \log (1/v_n)\left( 1+\frac{32}{dq}\right) ^{d/2}} = \frac{1}{\lambda \log (1/v_n)\left( 1+\frac{32}{dq}\right) ^{d/2}}\\&\ge \frac{1}{\lambda \log (1/v_n)\exp \left( \frac{16}{q}\right) } = \frac{\exp (-16/q)}{\lambda \log (1/v_n)}. \end{aligned}$$

\(\square \)

Proof of Lemma 6

Equation (11) follows from Lemma 3.

For \(n\ge n_2(f)\), the \(\rho \) values for the children of a split hyper-rectangle will not be much smaller than the parent. The largest possible decrease occurs if the values on the boundary of \(R_i\) are constant, say with value \(M_{m+k}+A\), and the new function values are the largest possible, namely \(M_{n}+A+a\), where

$$\begin{aligned} a \le \frac{1}{8}q d \left\| D^2f\right\| _{\infty , R_i} \left| R_i\right| ^{2/d}. \end{aligned}$$

Considering a child of the split hyper-rectangle (say with index i),

$$\begin{aligned} \rho ^{n+1}_i&\ge \frac{\left| R_i\right| /2}{\left( A+a+g({v_n})\right) ^{d/2}} \ge \frac{\left| R_i\right| /2}{\left( A+g({v_n})\right) ^{d/2} \left( 1+\frac{a}{A+g({v_n})} \right) ^{d/2}}\\&\ge \frac{\left| R_i\right| /2}{\left( A+g({v_n})\right) ^{d/2} \left( 1+\frac{ \frac{1}{8}q d \left\| D^2f\right\| _{\infty , R_i} \left| R_i\right| ^{2/d} }{\left| R_i\right| ^{2/d}} \frac{\left| R_i\right| ^{2/d}}{A+g({v_n})} \right) ^{d/2}}\\&\ge \frac{1}{2}\rho ^{n}_i \frac{1}{ \left( 1+\frac{ \frac{1}{8}q d \left\| D^2f\right\| _{\infty , R_i} \left| R_i\right| ^{2/d} }{\left| R_i\right| ^{2/d}} \frac{\left| R_i\right| ^{2/d}}{A+g({v_n})} \right) ^{d/2}}\\&= \frac{1}{2}\rho ^{n}_i \frac{1}{ \left( 1+\frac{ \frac{1}{8}q d \left\| D^2f\right\| _{\infty , R_i} \left| R_i\right| ^{2/d} }{\left| R_i\right| ^{2/d}} \left( \rho ^{n}_i\right) ^{2/d} \right) ^{d/2}}\\&\ge \frac{1}{2}\rho ^{n}_i \frac{1}{ \left( 1+\frac{ \frac{1}{8}q d \left\| D^2f\right\| _{\infty , R_i} \left| R_i\right| ^{2/d} }{\left| R_i\right| ^{2/d}} \left( \frac{4}{\lambda \log (n)}\right) ^{2/d} \right) ^{d/2}}\ \ \ \mathrm{(}\text {by Lemma}~3\mathrm{)}\\&\ge \frac{1}{2}\rho ^{n}_i \frac{1}{ \left( 1+\frac{ \frac{1}{8}q d \left\| D^2f\right\| _{\infty , R_i} \left| R_i\right| ^{2/d} }{\left| R_i\right| ^{2/d}} \left( \frac{{4}}{\lambda d^{d/2}\left\| D^2f\right\| _{\infty ,[0,1]^d}^{d/2} }\right) ^{2/d} \right) ^{d/2}}\ \ \ \mathrm{(}\text {since}~n\ge n_2\mathrm{)}\\&\ge \frac{1}{2}\rho ^{n}_i \frac{1}{ \left( 1+ \frac{1}{8}q d \left( \frac{{4}}{ (q d^3/4)^{d/2} }\right) ^{2/d} \right) ^{d/2}} = \frac{1}{2}\rho ^{n}_i \frac{1}{ \left( 1+ \frac{1}{8}q d \frac{{{4}}^{2/d}}{ q d^3/4 } \right) ^{d/2}}\\&= \frac{1}{2}\rho ^{n}_i \frac{1}{ \left( 1+ \frac{1}{2} \frac{{{4}}^{2/d}}{ d^2} \right) ^{d/2}} \ge \frac{1}{2} \rho ^{n}_i \exp \left( -\frac{1}{4d}{{4}}^{2/d}\right) \ge \frac{1}{2} e^{-1/{{2}}} \rho ^{n}_i, \end{aligned}$$

using the inequality \((1+x/k)^k \le \exp (x)\) and the fact that \(d\ge 2\) implies that \(4^{2/d}/(4d)\le 1/2\).

Consider the average of the \(\{\rho ^n_i\}\) at time n that were the product of splits after time n / 2. Over this time interval we have

$$\begin{aligned} \rho ^k \ge \frac{\exp (-16/q)}{\lambda \log (1/v_k)} \ge \frac{\exp (-16/q)}{\lambda \log (1/v_n)} \end{aligned}$$

by Lemma 5, since \(n\ge 2n_2(f)\). Since the children \(\rho \) values will not be much smaller than the parent’s,

$$\begin{aligned} \frac{1}{n}\sum _{i=1}^n\rho ^n_i \ge \frac{1}{n}\frac{n/2}{n/2}\sum _{i=n/2}^n\rho ^i \ge \frac{1}{2}\frac{1}{n/2}\sum _{i=n/2}^n \frac{\exp (-16/q)}{\lambda \log (1/v_i)} \ge \frac{1}{{2}} \frac{\exp (-16/q)}{\lambda \log (1/v_n)}, \end{aligned}$$

since \(v_i\ge v_n\). \(\square \)

Proof of Lemma 7

Fix a particular hyper-rectangle \(R_i\) with

$$\begin{aligned} \rho ^n_i = \int _{R_i}\frac{ds}{(L_n(s)-f^*+g(v_n))^{d/2}}. \end{aligned}$$

We first show that the integrals

$$\begin{aligned} \int _{R_i}\frac{ds}{(f(s)-f^*+g(v_n))^{d/2}},\ \ \int _{R_i}\frac{ds}{(L_n(s)-f^*+g(v_n))^{d/2}} \end{aligned}$$

are close. As in the proof of Lemma 3, let

$$\begin{aligned} a+Q(s) = L(s)-f^*+g(v_n), \end{aligned}$$

where \(a=\min _{s\in {R_i}} L_n(s)-f^*+g(v_n) >0\). Then, from (6),

$$\begin{aligned} \max _{x\in {R_i}}\left| f(x)-L_n(x)\right| \le \frac{1}{8} q\cdot d \left\| D^2f\right\| _{\infty , {R_i}} \left| {R_i}\right| ^{2/d}\equiv b, \end{aligned}$$

and

$$\begin{aligned} \frac{ \int _{R_i}\frac{ds}{(f(s)-f^*+g(v_n))^{d/2}} }{ \int _{R_i}\frac{ds}{(L_n(s)-f^*+g(v_n))^{d/2}} } \ge \frac{ \int _{R_i}\frac{ds}{(L_n(s)-f^*+g(v_n)+b)^{d/2} } }{ \int _{R_i}\frac{ds}{(L_n(s)-f^*+g(v_n))^{d/2}} } = \frac{ \int _{R_i}\frac{ds}{(a+Q(s)+b)^{d/2} } }{ \int _{R_i}\frac{ds}{(a+Q(s))^{d/2}} }. \end{aligned}$$

The smallest value of the ratio occurs when \(Q(s)\equiv 0\).

The case \(Q\equiv 0\) corresponds to \(\rho = \left| {R_i}\right| /a^{d/2}\), and so

$$\begin{aligned}&\frac{ \int _{R_i}\frac{ds}{(a+Q(s)+b)^{d/2} } }{ \int _{R_i}\frac{ds}{(a+Q(s))^{d/2}} } \ge \frac{ \int _{R_i}\frac{ds}{(a+b)^{d/2} } }{ \int _{R_i}\frac{ds}{a^{d/2}} } =\left( \frac{a}{a+b}\right) ^{d/2}\\&\quad = \frac{1}{\left( 1+ \frac{1}{8} q\cdot d \left\| D^2f\right\| _{\infty , {R_i}}\frac{ \left| {R_i}\right| ^{2/d}}{a}\right) ^{d/2}} = \frac{1}{\left( 1+\frac{1}{8} q\cdot d \left\| D^2f\right\| _{\infty , {R_i}} \rho ^{2/d}\right) ^{d/2}}. \end{aligned}$$

Now

$$\begin{aligned} \frac{1}{8} q\cdot d \left\| D^2f\right\| _{\infty , {R_i}} \rho ^{2/d}&\le \frac{1}{8} q\cdot d \left\| D^2f\right\| _{\infty , {R_i}} \left( \frac{4}{\lambda \log (n)}\right) ^{2/d}\\&\le \frac{1}{8} q\cdot d \left\| D^2f\right\| _{\infty , {R_i}} \frac{4^{2/d}}{\frac{qd^3}{4} \left\| D^2f\right\| _{\infty , {R_i}}} = \frac{4^{2/d}}{2d^2}. \end{aligned}$$

Therefore,

$$\begin{aligned} \frac{ \int _{R_i}\frac{ds}{(a+Q(s)+b)^{d/2} } }{ \int _{R_i}\frac{ds}{(a+Q(s))^{d/2}} } \ge \frac{1}{\left( 1+ \frac{4^{2/d}}{2d^2}\right) ^{d/2}} \ge \frac{2}{3}, \end{aligned}$$

since the last expression is increasing in \(d\ge 2\). Turning to an upper bound for

$$\begin{aligned} \frac{ \int _{R_i}\frac{ds}{(f(s)-f^*+g(v_n))^{d/2}} }{ \int _{R_i}\frac{ds}{(L_n(s)-f^*+g(v_n))^{d/2}} }, \end{aligned}$$

observe that

$$\begin{aligned} \frac{ \int _{R_i}\frac{ds}{(f(s)-f^*+g(v_n))^{d/2}} }{ \int _{R_i}\frac{ds}{(L_n(s)-f^*+g(v_n))^{d/2}} }\le & {} \frac{ \int _{R_i}\frac{ds}{(L_n(s)-f^*+g(v_n)-b) } }{ \int _{R_i}\frac{ds}{(L_n(s)-f^*+g(v_n))^{d/2}} } \equiv \frac{ \int _{R_i}\frac{ds}{(a+Q(s)-b)^{d/2} } }{ \int _{R_i}\frac{ds}{(a+Q(s))^{d/2}} }\\\le & {} \frac{1}{\left( 1-\frac{b}{a}\right) ^{d/2}} \le \frac{1}{\left( 1- \frac{4^{2/d}}{2d^2}\right) ^{d/2}} \le 2. \end{aligned}$$

We have shown that

$$\begin{aligned}&\frac{2}{3}\int _{[0,1]^d}\frac{ds}{(L_n(s)-f^*+g(v_n))^{d/2}} \le \int _{[0,1]^d}\frac{ds}{(f(s)-f^*+g(v_n))^{d/2}}\nonumber \\&\quad \le 2\int _{[0,1]^d}\frac{ds}{(L_n(s)-f^*+g(v_n))^{d/2}}. \end{aligned}$$
(32)

Recall that \(v_n^*\) denotes the volume of the hyper-rectangle containing the minimizer \(x^*\). Since \(n\ge n_2\), by Lemma 4 \(v_n^* \le 4 v_n\) and

$$\begin{aligned} M_n-f^* \le \frac{g(v_n)}{d^2/2}. \end{aligned}$$

Therefore,

$$\begin{aligned} \int _R\frac{ds}{(L_n(s)-M_n +g(v_n))^{d/2}}&= \int _R\frac{ds}{(L_n(s)-M_n +g(v_n) +M_n-f^*)^{d/2}}\\&= \int _R\frac{ds}{ (L_n(s)-M_n +g(v_n))^{d/2} \left( 1+\frac{\varDelta _n}{L_n(s)-M_n +g(v_n)}\right) ^{d/2}}\\&\ge \int _R\frac{ds}{(L_n(s)-M_n +g(v_n)(1+2/d^2))^{d/2}}\ \ \text {by}~(10)\\&=\frac{1}{\left( 1+2/d^2\right) ^{d/2}} \int _R\frac{ds}{(L_n(s)-M_n +g(v_n))^{d/2}}\\&\ge \frac{2}{3} \int _R\frac{ds}{(L_n(s)-M_n +g(v_n))^{d/2}}. \end{aligned}$$

Combining these inequalities with (32) gives

$$\begin{aligned}&\frac{4}{9}\int _{[0,1]^d}\frac{ds}{(L_n(s)-M_n+g(v_n))^{d/2}} \le \frac{2}{3}\int _{[0,1]^d}\frac{ds}{(L_n(s)-f^*+g(v_n))^{d/2}}\\&\quad \le \int _{[0,1]^d}\frac{ds}{(f(s)-f^*+g(v_n))^{d/2}} \le 2\int _{[0,1]^d}\frac{ds}{(L_n(s)-f^*+g(v_n))^{d/2}}\\&\quad \le 2\int _{[0,1]^d}\frac{ds}{(L_n(s)-M_n+g(v_n))^{d/2}}. \end{aligned}$$

Since

$$\begin{aligned} \sum _{i=1}^{{n}}\rho _i^n = \int _{[0,1]^d}\frac{ds}{(L_n(s)-M_n+g(v_n))^{d/2}}, \end{aligned}$$

this completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calvin, J., Gimbutienė, G., Phillips, W.O. et al. On convergence rate of a rectangular partition based global optimization algorithm. J Glob Optim 71, 165–191 (2018). https://doi.org/10.1007/s10898-018-0636-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-018-0636-z

Keywords

Navigation