Skip to main content
Log in

Bundle-based descent method for nonsmooth multiobjective DC optimization with inequality constraints

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Multiobjective DC optimization problems arise naturally, for example, in data classification and cluster analysis playing a crucial role in data mining. In this paper, we propose a new multiobjective double bundle method designed for nonsmooth multiobjective optimization problems having objective and constraint functions which can be presented as a difference of two convex (DC) functions. The method is of the descent type and it generalizes the ideas of the double bundle method for multiobjective and constrained problems. We utilize the special cutting plane model angled for the DC improvement function such that the convex and the concave behaviour of the function is captured. The method is proved to be finitely convergent to a weakly Pareto stationary point under mild assumptions. Finally, we consider some numerical experiments and compare the solutions produced by our method with the method designed for general nonconvex multiobjective problems. This is done in order to validate the usage of the method aimed specially for DC objectives instead of a general nonconvex method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1

Similar content being viewed by others

References

  1. Astorino, A., Miglionico, G.: Optimizing sensor cover energy via DC programming. Optim. Lett. 10(2), 355–368 (2016)

    Article  MathSciNet  Google Scholar 

  2. Bagirov, A., Karmitsa, N., Mäkelä, M.M.: Introduction to Nonsmooth Optimization: Theory, Practice and Software. Springer, Cham (2014)

    Book  Google Scholar 

  3. Bagirov, A., Yearwood, J.: A new nonsmooth optimization algorithm for minimum sum-of-squares clustering problems. Eur. J. Oper. Res. 170(2), 578–596 (2006)

    Article  MathSciNet  Google Scholar 

  4. Bello Cruz, J.Y., Iusem, A.N.: A strongly convergent method for nonsmooth convex minimization in Hilbert spaces. Numer. Funct. Anal. Optim. 32(10), 1009–1018 (2011)

    Article  MathSciNet  Google Scholar 

  5. Bonnel, H., Iusem, A.N., Svaiter, B.F.: Proximal methods in vector optimization. SIAM J. Optim. 15(4), 953–970 (2005)

    Article  MathSciNet  Google Scholar 

  6. Carrizosa, E., Guerrero, V., Romero Morales, D.: Visualizing data as objects by DC (difference of convex) optimization. Math. Program. (2017). https://doi.org/10.1007/s10107-017-1156-1

    Article  MATH  Google Scholar 

  7. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  8. Gadhi, N., Metrane, A.: Sufficient optimality condition for vector optimization problems under DC data. J. Global Optim. 28(1), 55–66 (2004)

    Article  MathSciNet  Google Scholar 

  9. Gaudioso, M., Giallombardo, G., Miglionico, G., Bagirov, A.: Minimizing nonsmooth DC functions via successive DC piecewise-affine approximations. J. Global Optim. (2017). https://doi.org/10.1007/s10898-017-0568-z

    Article  MATH  Google Scholar 

  10. Gaudioso, M., Gruzdeva, T.V., Strekalovsky, A.S.: On numerical solving the spherical separability problem. J. Global Optim. 66(1), 21–34 (2016)

    Article  MathSciNet  Google Scholar 

  11. Hartman, P.: On functions representable as a difference of convex functions. Pac. J. Math. 9(3), 707–713 (1959)

    Article  MathSciNet  Google Scholar 

  12. Hiriart-Urruty, J.B.: Generalized differentiability, duality and optimization for problems dealing with differences of convex functions. Lect. Note Econ. Math. Syst. 256, 37–70 (1985)

    Article  MathSciNet  Google Scholar 

  13. Holmberg, K., Tuy, H.: A production-transportation problem with stochastic demand and concave production costs. Math. Program. 85(1), 157–179 (1999)

    Article  MathSciNet  Google Scholar 

  14. Horst, R., Thoai, N.V.: DC programming: overview. J. Optim. Theory Appl. 103(1), 1–43 (1999)

    Article  MathSciNet  Google Scholar 

  15. Ji, Y., Goh, M., de Souza, R.: Proximal point algorithms for multi-criteria optimization with the difference of convex objective functions. J. Optim. Theory Appl. 169(1), 280–289 (2016)

    Article  MathSciNet  Google Scholar 

  16. Joki, K., Bagirov, A., Karmitsa, N., Mäkelä, M.M.: A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes. J. Global Optim. 68(3), 501–535 (2017)

    Article  MathSciNet  Google Scholar 

  17. Joki, K., Bagirov, A., Karmitsa, N., Mäkelä, M.M., Taheri, S.: Double bundle method for finding Clarke stationary points in nonsmooth DC programming. SIAM J. Optim. (2018) (to appear)

  18. Kiwiel, K.C.: An aggregate subgradient method for nonsmooth convex minimization. Math. Program. 27(3), 320–341 (1983)

    Article  MathSciNet  Google Scholar 

  19. Kiwiel, K.C.: A descent method for nonsmooth convex multiobjective minimization. Large Scale Syst. 8(2), 119–129 (1985)

    MathSciNet  MATH  Google Scholar 

  20. Kiwiel, K.C.: Proximity control in bundle methods for convex nondifferentiable optimization. Math. Program. 46(1), 105–122 (1990)

    Article  MathSciNet  Google Scholar 

  21. Le Thi, H.A., Pham Dinh, T.: Solving a class of linearly constrained indefinite quadratic problems by DC algorithms. J. Global Optim. 11(3), 253–285 (1997)

    Article  MathSciNet  Google Scholar 

  22. Le Thi, H.A., Pham Dinh, T.: The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems. Annals Oper. Res. 133(1), 23–46 (2005)

    MathSciNet  MATH  Google Scholar 

  23. Lukšan, L.: Dual method for solving a special problem of quadratic programming as a subproblem at linearly constrained nonlinear minimax approximation. Kybernetika 20(6), 445–457 (1984)

    MathSciNet  MATH  Google Scholar 

  24. Mäkelä, M.M.: Multiobjective Proximal Bundle Method for Nonconvex Nonsmooth Optimization: Fortran Subroutine MPBNGC 2.0. Technical Representative B 13/2003, Reports of the Department of Mathematical Information Technology, Series B, Scientific computing, University of Jyväskylä, Jyväskylä (2003)

  25. Mäkelä, M.M., Eronen, V.P., Karmitsa, N.: On Nonsmooth Multiobjective Optimality Conditions with Generalized Convexities. Tech. Rep. 1056, TUCS Technical Reports, Turku Centre for Computer Science, Turku (2012)

  26. Mäkelä, M.M., Eronen, V.P., Karmitsa, N.: On nonsmooth multiobjective optimality conditions with generalized convexities. In: Rassias, T.M., Floudas, C.A., Butenko, S. (eds.) Optimization in Science and Engineering, pp. 333–357. Springer, Berlin (2014)

    Chapter  Google Scholar 

  27. Mäkelä, M.M., Karmitsa, N., Wilppu, O.: Proximal bundle method for nonsmooth and nonconvex multiobjective optimization. In: Tuovinen, T., Repin, S., Neittaanmäki, P. (eds.) Mathematical Modeling and Optimization of Complex Structures, Computational Methods in Applied Sciences, vol. 40, pp. 191–204. Springer, Berlin (2016)

    Chapter  Google Scholar 

  28. Mäkelä, M.M., Neittaanmäki, P.: Nonsmooth Optimization: Analysis and Algorithms with Applications to Optimal Control. World Scientific Publishing Co., Singapore (1992)

    Book  Google Scholar 

  29. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999)

    MATH  Google Scholar 

  30. Miettinen, K., Mäkelä, M.M.: Interactive bundle-based method for nondifferentiable multiobjective optimization: NIMBUS. Optimization 34(3), 231–246 (1995)

    Article  MathSciNet  Google Scholar 

  31. Mistakidis, E.S., Stavroulakis, G.E.: Nonconvex Optimization in Mechanics. Smooth and Nonsmooth Algorithms, Heuristics and Engineering Applications by the F.E.M. Kluwer Academic Publisher, Dordrecht (1998)

    MATH  Google Scholar 

  32. Moreau, J.J., Panagiotopoulos, P.D., Strang, G. (eds.): Topics in Nonsmooth Mechanics. Birkhäuser, Basel (1988)

    MATH  Google Scholar 

  33. Mukai, H.: Algorithms for multicriterion optimization. IEEE Trans. Autom. Control ac–25(2), 177–186 (1979)

    Article  MathSciNet  Google Scholar 

  34. Outrata, J., Koĉvara, M., Zowe, J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Theory, Applications and Numerical Results. Kluwer Academic Publishers, Dordrecht (1998)

    MATH  Google Scholar 

  35. Pham Dinh, T., Le Thi, H.A.: Convex analysis approach to DC programming: Theory, algorithms and applications. Acta Math. Vietnam. 22(1), 289–355 (1997)

    MathSciNet  MATH  Google Scholar 

  36. Qu, S., Goh, M., Wu, S.Y., De Souza, R.: Multiobjective DC programs with infinite convex constraints. J. Global Optim. 59(1), 41–58 (2014)

    Article  MathSciNet  Google Scholar 

  37. Qu, S., Liu, C., Goh, M., Li, Y., Ji, Y.: Nonsmooth multiobjective programming with quasi-Newton methods. Eur. J. Oper. Res. 235(3), 503–510 (2014)

    Article  MathSciNet  Google Scholar 

  38. Schramm, H., Zowe, J.: A version of the bundle idea for minimizing a nonsmooth function: Conceptual idea, convergence analysis, numerical results. SIAM J. Optim. 2(1), 121–152 (1992)

    Article  MathSciNet  Google Scholar 

  39. Sun, W.Y., Sampaio, R.J.B., Candido, M.A.B.: Proximal point algorithm for minimization of DC functions. J. Comput. Math. 21(4), 451–462 (2003)

    MathSciNet  MATH  Google Scholar 

  40. Taa, A.: Optimality conditions for vector optimization problems of a difference of convex mappings. J. Global Optim. 31(3), 421–436 (2005)

    Article  MathSciNet  Google Scholar 

  41. Toland, J.F.: On subdifferential calculus and duality in nonconvex optimization. Mémoires de la Société Mathématique de France 60, 177–183 (1979)

    Article  MathSciNet  Google Scholar 

  42. Wang, S.: Algorithms for multiobjective and nonsmooth optimization. In: Kleinschmidt, P., Radermacher, F., Sweitzer, W., Wildermann, H. (eds.) Methods of Operations Research, vol. 58, pp. 131–142. Athenaum Verlag, Kronberg im Taunus (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Outi Montonen.

Additional information

The research is financially supported by University of Turku Graduate School UTUGS Matti Programme, and Academy of Finland Project No. 294002. The authors gratefully thank Marko Mäkelä and Napsu Karmitsa for their valuable comments and encouragement during the preparation of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montonen, O., Joki, K. Bundle-based descent method for nonsmooth multiobjective DC optimization with inequality constraints. J Glob Optim 72, 403–429 (2018). https://doi.org/10.1007/s10898-018-0651-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-018-0651-0

Keywords

Mathematics Subject Classification

Navigation