Skip to main content
Log in

A unified DC programming framework and efficient DCA based approaches for large scale batch reinforcement learning

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We investigate a powerful nonconvex optimization approach based on Difference of Convex functions (DC) programming and DC Algorithm (DCA) for reinforcement learning, a general class of machine learning techniques which aims to estimate the optimal learning policy in a dynamic environment typically formulated as a Markov decision process (with an incomplete model). The problem is tackled as finding the zero of the so-called optimal Bellman residual via the linear value-function approximation for which two optimization models are proposed: minimizing the \(\ell _{p}\)-norm of a vector-valued convex function, and minimizing a concave function under linear constraints. They are all formulated as DC programs for which attractive DCA schemes are developed. Numerical experiments on various examples of the two benchmarks of Markov decision process problems—Garnet and Gridworld problems, show the efficiency of our approaches in comparison with two existing DCA based algorithms and two state-of-the-art reinforcement learning algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abbeel, P., Ng, A.Y.: Apprenticeship learning via inverse reinforcement learning. In: Proceedings of the Twenty-first International Conference on Machine Learning, ICML. ACM, New York (2004)

  2. Antos, A., Szepesvári, C., Munos, R.: Learning near-optimal policies with bellman-residual minimization based fitted policy iteration and a single sample path. Mach. Learn. 71(1), 89–129 (2008)

    Article  MATH  Google Scholar 

  3. Baird, L.C.I.: Residual algorithms: reinforcement learning with function approximation. In: Prieditis, A., Russell, S. (eds.) Machine Learning Proceedings 1995, pp. 30–37. Morgan Kaufmann, San Francisco (1995)

  4. Bellman, R.: A markovian decision process. Indiana Univ. Math. J. 6(4), 679–684 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bertsekas, D.P. (ed.): Dynamic Programming: Deterministic and Stochastic Models. Prentice-Hall Inc, Upper Saddle River (1987)

    MATH  Google Scholar 

  6. Bertsekas, D.P., Tsitsiklis, J.N. (eds.): Neuro-Dynamic Programming. Athena Scientific, Belmont (1996)

    MATH  Google Scholar 

  7. Bhatnagar, S., Sutton, R.S., Ghavamzadeh, M., Lee, M.: Natural actor-critic algorithms. Automatica 45(11), 2471–2482 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Blanquero, R., Carrizosa, E.: Optimization of the norm of a vector-valued dc function and applications. J. Optim. Theory Appl. 107(2), 245–260 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Blanquero, R., Carrizosa, E.: On the norm of a dc function. J. Glob. Optim. 48(2), 209–213 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Buşoniu, L., Babuska, R., Schutter, B.D., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators, 1st edn. CRC Press Inc, Boca Raton (2010)

    MATH  Google Scholar 

  11. Coulom, R.: Reinforcement learning using neural networks, with applications to motor control. Ph.D. thesis, Institut National Polytechnique de Grenoble (2002)

  12. Cruz Neto, J.X., Lopes, J.O., Santos, P.S.M., Souza, J.C.O.: An interior proximal linearized method for DC programming based on Bregman distance or second-order homogeneous kernels. Optimization, 1–15 (2018). https://doi.org/10.1080/02331934.2018.1476859

  13. Ernst, D., Geurts, P., Wehenkel, L.: Tree-based batch mode reinforcement learning. J. Mach. Learn. Res. 6, 503–556 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Esser, E., Lou, Y., Xin, J.: A method for finding structured sparse solutions to non-negative least squares problems with applications. SIAM J. Imaging Sci. 6(4), 2010–2046 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gaudioso, M., Giallombardo, G., Miglionico, G., Bagirov, A.M.: Minimizing nonsmooth dc functions via successive dc piecewise-affine approximations. J. Glob. Optim. 71(1), 37–55 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Geist, M., Pietquin, O.: Algorithmic survey of parametric value function approximation. IEEE Trans. Neural Netw. Learn. Syst. 24(6), 845–867 (2013)

    Article  Google Scholar 

  17. Geramifard, A., Walsh, T.J., Tellex, S., Chowdhary, G., Roy, N., How, J.P.: A tutorial on linear function approximators for dynamic programming and reinforcement learning. Found. Trends Mach. Learn. 6(4), 375–451 (2013)

    Article  MATH  Google Scholar 

  18. Gosavi, A.: Reinforcement learning: a tutorial survey and recent advances. INFORMS J. Comput. 21(2), 178–192 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ho, V.T., Le Thi, H.A.: Solving an infinite-horizon discounted markov decision process by DC programming and DCA. In: Nguyen, T.B., van Do, T., An Le Thi, H., Nguyen, N.T. (eds.) Advanced Computational Methods for Knowledge Engineering, pp. 43–55. Springer, Berlin (2016)

    Chapter  Google Scholar 

  20. Joki, K., Bagirov, A., Karmitsa, N., Mäkelä, M., Taheri, S.: Double bundle method for finding clarke stationary points in nonsmooth dc programming. SIAM J. Optim. 28(2), 1892–1919 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Joki, K., Bagirov, A.M., Karmitsa, N., Mäkelä, M.M.: A proximal bundle method for nonsmooth dc optimization utilizing nonconvex cutting planes. J. Glob. Optim. 68(3), 501–535 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Koshi, S.: Convergence of convex functions and duality. Hokkaido Math. J. 14(3), 399–414 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lagoudakis, M.G., Parr, R.: Least-squares policy iteration. J. Mach. Learn. Res. 4, 1107–1149 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Lange, S., Gabel, T., Riedmiller, M.: Batch Reinforcement Learning. In: Wiering, M., van Otterlo, M. (eds.) Reinforcement Learning., vol. 12, chap. 2, pp. 45–73. Springer, Berlin, Heidelberg, Hillsdale (2012)

    Chapter  Google Scholar 

  25. Le Thi, H.A.: DC Programming and DCA. http://www.lita.univ-lorraine.fr/~lethi/index.php/en/research/dc-programming-and-dca.html (homepage) (2005). Accessed 1 Dec 2005

  26. Le Thi, H.A., Le, H.M., Pham Dinh, T.: Feature selection in machine learning: an exact penalty approach using a difference of convex function algorithm. Mach. Learn. 101(1–3), 163–186 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Le Thi, H.A., Nguyen, M.C.: Self-organizing maps by difference of convex functions optimization. Data Min. Knowl. Discov. 28(5–6), 1336–1365 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Le Thi, H.A., Nguyen, M.C., Pham Dinh, T.: A dc programming approach for finding communities in networks. Neural Comput. 26(12), 2827–2854 (2014)

    Article  MathSciNet  Google Scholar 

  29. Le Thi, H.A., Pham Dinh, T.: Solving a class of linearly constrained indefinite quadratic problems by D.C. algorithms. J. Glob. Optim. 11(3), 253–285 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Le Thi, H.A., Pham Dinh, T.: The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems. Ann. Oper. Res. 133(1–4), 23–46 (2005)

    MathSciNet  MATH  Google Scholar 

  31. Le Thi, H.A., Pham Dinh, T.: DC programming and DCA: thirty years of developments. Math. Program. Spec. Issue DC Program. Theory Algorithms Appl. 169(1), 5–68 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Le Thi, H.A., Pham Dinh, T., Le, H.M., Vo, X.T.: DC approximation approaches for sparse optimization. Eur. J. Oper. Res. 244(1), 26–46 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Le Thi, H.A., Vo, X.T., Pham Dinh, T.: Feature selection for linear SVMs under uncertain data: robust optimization based on difference of convex functions algorithms. Neural Netw. 59, 36–50 (2014)

    Article  MATH  Google Scholar 

  34. Liu, Y., Shen, X., Doss, H.: Multicategory \(\psi \)-learning and support vector machines: computational tools. J. Comput. Gr. Stat. 14(1), 219–236 (2005)

    Article  MathSciNet  Google Scholar 

  35. Maillard, O.A., Munos, R., Lazaric, A., Ghavamzadeh, M.: Finite sample analysis of Bellman residual minimization. In: Sugiyama,M., Yang, Q. (eds.) Asian Conference on Machine Learpning. JMLR: Workshop and Conference Proceedings, vol. 13, pp. 309–324 (2010)

  36. Munos, R.: Performance bounds in \(L_p\) norm for approximate value iteration. SIAM J. Control Optim. 46(2), 541–561 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Oliveira, W.D.: Proximal bundle methods for nonsmooth DC programming (2017). https://drive.google.com/file/d/0ByLZhUZ45Y-HQnVvOEZ3REw0Sk0/view. Accessed 20 July 2018

  38. Oliveira, W.D., Tcheou, M.: An inertial algorithm for DC programming (2018). https://drive.google.com/file/d/1CUQRJBBVMtH2dFMuIa5_s6xcEjAG5xeC/view. Accessed 20 July 2018

  39. Pashenkova, E., Rish, I., Dechter, R.: Value iteration and policy iteration algorithms for markov decision problem. In Proceedings of the National Conference on Artificial Intelligence (AAAI) Workshop on Structural Issues in Planning and Temporal Reasoning, April (1996)

  40. Pham Dinh, T., El Bernoussi, S.: Algorithms for solving a class of nonconvex optimization problems. methods of subgradients. In: Hiriart-Urruty, J.B. (ed.) Fermat Days 85: Mathematics for Optimization. North-Holland Mathematics Studies, vol. 129, pp. 249–271. North-Holland, Amsterdam (1986)

    Chapter  Google Scholar 

  41. Pham Dinh, T., Le Thi, H.A.: Convex analysis approach to DC programming: theory, algorithms and applications. Acta Mathematica Vietnamica 22(1), 289–355 (1997)

    MathSciNet  MATH  Google Scholar 

  42. Pham Dinh, T., Le Thi, H.A.: DC optimization algorithms for solving the trust region subproblem. SIAM J. Optim. 8(2), 476–505 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  43. Pham Dinh, T., Le Thi, H.A.: Recent advances in DC programming and DCA. In: Nguyen, N.T., Le Thi, H.A. (eds.) Transactions on Computational Intelligence XIII, vol. 8342, pp. 1–37. Springer, Berlin, Heidelberg (2014)

    Chapter  Google Scholar 

  44. Piot, B., Geist, M., Pietquin, O.: Difference of convex functions programming for reinforcement learning. In: Advances in Neural Information Processing Systems (NIPS 2014) (2014)

  45. Puterman, M.L. (ed.): Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, New York (1994)

    MATH  Google Scholar 

  46. Rockafellar, R.T.: Convex Analysis. Princeton Mathematical Series. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  47. Salinetti, G., Wets, R.J.: On the relations between two types of convergence for convex functions. J. Math. Anal. Appl. 60(1), 211–226 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  48. Scherrer, B.: Should one compute the Temporal Difference fix point or minimize the Bellman Residual? The unified oblique projection view. In: 27th International Conference on Machine Learning—ICML 2010. Haïfa, Israel (2010)

  49. Schüle, T., Schnörr, C., Weber, S., Hornegger, J.: Discrete tomography by convex–concave regularization and d.c. programming. Discrete Appl. Math. 151, 229–243 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  50. Schweitzer, P., Seidmann, A.: Generalized polynomial approximations in markovian decision processes. J. Math. Anal. Appl. 110(2), 568–582 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  51. Sigaud, O., Buffet, O. (eds.): Markov Decision Processes in Artificial Intelligence. Wiley-IEEE Press, Hoboken (2010)

    MATH  Google Scholar 

  52. Singh, S., Jaakkola, T., Littman, M.L., Szepesvári, C.: Convergence results for single-step on-policy reinforcement-learning algorithms. Mach. Learn. 38(3), 287–308 (2000)

    Article  MATH  Google Scholar 

  53. Singh, S.P., Jaakkola, T., Jordan, M.I.: Reinforcement learning with soft state aggregation. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) Advances in Neural Information Processing Systems, vol. 7, pp. 361–368. MIT Press, San Mateo (1995)

    Google Scholar 

  54. Souza, J.C.O., Oliveira, P.R., Soubeyran, A.: Global convergence of a proximal linearized algorithm for difference of convex functions. Optim. Lett. 10(7), 1529–1539 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  55. Sutton, R.S.: Generalization in reinforcement learning: successful examples using sparse coarse coding. In: Advances in Neural Information Processing Systems, vol. 8, pp. 1038–1044. MIT Press (1996)

  56. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  57. Szepesvári, C.: Algorithms for Reinforcement Learning. Morgan & Claypool, San Rafael (2010)

    Book  MATH  Google Scholar 

  58. Szepesvári, C., Smart, W.D.: Interpolation-based q-learning. In: Proceedings of the Twenty-First International Conference on Machine Learning, ICML ’04, pp. 791–798. ACM, New York (2004)

  59. Tor, A.H., Bagirov, A., Karasözen, B.: Aggregate codifferential method for nonsmooth dc optimization. J. Comput. Appl. Math. 259, 851–867 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  60. Vapnik, V.N. (ed.): Statistical Learning Theory. Wiley, Hoboken (1998)

    MATH  Google Scholar 

  61. Watkins, C.J.C.H.: Learning from delayed rewards. Ph.D. thesis, King’s College, Cambridge (1989)

  62. Wiering, M., van Otterlo, M. (eds.): Reinforcement Learning: State-of-the-Art. Adaptation, Learning, and Optimization, vol. 12, 1st edn. Springer, Berlin, Heidelberg (2012)

    Google Scholar 

  63. Williams, R.J., Baird, L.C.I.: Tight performance bounds on greedy policies based on imperfect value functions. College of Computer Science, Northeastern University, Tech. rep. (1993)

  64. Xu, X., Zuo, L., Huang, Z.: Reinforcement learning algorithms with function approximation: recent advances and applications. Inf. Sci. 261, 1–31 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoai An Le Thi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Thi, H., Ho, V. & Pham Dinh, T. A unified DC programming framework and efficient DCA based approaches for large scale batch reinforcement learning. J Glob Optim 73, 279–310 (2019). https://doi.org/10.1007/s10898-018-0698-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-018-0698-y

Keywords

Navigation