Skip to main content
Log in

Geometric properties for level sets of quadratic functions

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, we study some fundamental geometrical properties related to the \({\mathcal {S}}\)-procedure. Given a pair of quadratic functions (gf), it asks when “\(g(x)=0 \Longrightarrow ~ f(x)\ge 0\)” can imply “(\(\exists \lambda \in {\mathbb {R}}\)) (\(\forall x\in {\mathbb {R}}^n\)\(f(x) + \lambda g(x)\ge 0.\)” Although the question has been answered by Xia et al. (Math Program 156:513–547, 2016), we propose a neat geometric proof for it (see Theorem 2): the \({\mathcal {S}}\)-procedure holds when, and only when, the level set \(\{g=0\}\) cannot separate the sublevel set \(\{f<0\}.\) With such a separation property, we proceed to prove that, for two polynomials (gf) both of degree 2, the image set of g over \(\{f<0\}, g(\{f<0\})\), is always connected (see Theorem 4). It implies that the \({\mathcal {S}}\)-procedure is a kind of the intermediate value theorem. As a consequence, we know not only the infimum of g over \(\{f\le 0\}\), but the extended results when g over \(\{f\le 0\}\) is unbounded from below or bounded but unattainable. The robustness and the sensitivity analysis of an optimization problem involving the pair (gf) automatically follows. All the results in this paper are novel and fundamental in control theory and optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Albert, A.: Conditions for positive and nonnegative definiteness in terms of pseudoinverses. SIAM J. Appl. Math. 17, 434–440 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anstreicher, K.M., Wright, M.H.: A note on the augmented Hessian when the reduced Hessian is semidefinite. SIAM J. Optim. 11, 243–253 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beck, A., Eldar, Y.C.: Strong duality in nonconvex quadratic optimization with two quadratic constraint. SIAM J. Optim. 17, 844–860 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boyd, S.: Linear Matrix Inequalities in System and Control Theory, vol. 15. SIAM, Philadelphia (1994)

    Book  MATH  Google Scholar 

  5. Derinkuyu, K., Pinar, M.C.: On the S-procedure and some variants. Math. Methods Oper. Res. 64, 55–77 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dines, L.L.: On the mapping of quadratic forms. Bull. Am. Math. Soc. 47, 494–498 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  7. Finsler, P.: Über das Vorkommen definiter und semidefiniter Formen und Scharen quadratischer Formen. Comment. Math. Helv. 9, 188–192 (1937)

    Article  MATH  Google Scholar 

  8. Fradkov, A.L., Yakubovich, V.A.: The \({\cal{S}}\)-procedure and the duality relations in nonconvex problems of quadratic programmming. Vestnik Leningrad. Univ. Math. 6, 101–109 (1979)

    MATH  Google Scholar 

  9. Hsia, Y., Lin, G.X., Sheu, R.L.: A revisit to quadratic programming with one inequality quadratic constraint via matrix pencil. Pac. J. Optim. 10, 461–481 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Luo, Z.Q., Sturm, J.F., Zhang, S.: Multivariate nonnegative quadratic mappings. SIAM J. Optim. 14, 1149–1162 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Moré, J.J.: Generalizations of the trust region problem. Optim. Methods Softw. 2, 189–209 (1993)

    Article  Google Scholar 

  12. Nguyen, V.B., Sheu, R.L., Xia, Y.: An SDP approach for quadratic fractional problems with a two sided quadratic constraint. Optim. Methods Softw. 31, 701–719 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Polik I, I., Terlaky, T.: A survey of the S-lemma. SIAM Rev. 49, 371–418 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Polyak, B.T.: Convexity of quadratic transformations and its use in control and optimization. J. Optim. Theory Appl. 99, 553–583 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Xia, Y., Wang, S., Sheu, R.L.: S-lemma with equality and its applications. Math. Program. 156, 513–547 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tuy, H., Tuan, H.D.: Generalized S-lemma and strong duality in nonconvex quadratic programming. J. Glob. Optim. 56, 1045–1072 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yakubovich, V.A.: The \({\cal{S}}\)-procedure in non-linear control theory. Vestnik Leningrad. Univ. Math., 4, pp. 73–93 (1977) (in Russian 1971)

Download references

Acknowledgements

Funding was provided by Ministry of Science and Technology, Taiwan (Grant No. MOST 105-2115-M-006-005-MY2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruey-Lin Sheu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, HQ., Sheu, RL. Geometric properties for level sets of quadratic functions. J Glob Optim 73, 349–369 (2019). https://doi.org/10.1007/s10898-018-0706-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-018-0706-2

Keywords

Navigation