Skip to main content
Log in

Solving pooling problems with time discretization by LP and SOCP relaxations and rescheduling methods

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The pooling problem is an important industrial problem in the class of network flow problems for allocating gas flow in pipeline transportation networks. For the pooling problem with time discretization, we propose second order cone programming (SOCP) and linear programming (LP) relaxations and prove that they obtain the same optimal value as the semidefinite programming relaxation. Moreover, a rescheduling method is proposed to efficiently refine the solution obtained by the SOCP or LP relaxation. The efficiency of the SOCP and the LP relaxation and the proposed rescheduling method is illustrated with numerical results on the test instances from the work of Nishi in 2010, some large instances and Foulds 3, 4 and 5 test problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahmadi, A.A., Dashb, S., Hal, G.: Optimization over structured subsets of positive semidefinite matrices via column generation. Discrete Optim. 24, 129–151 (2017)

    Article  MathSciNet  Google Scholar 

  2. Ahmadi, A.A. Majumbar, A.: DSOS and SDSOS optimization: Lp and socp-based alternatives to sum of squares optimization. In: Proceedings of the 48th Annual Conference on Information Sciences and Systems, pp. 1–5 (2014)

  3. Ahmadi, A.A., Majumdar, A.: Spotless: software for DSOS and SDSOS optimization (2014). https://github.com/spot-toolbox/spotless

  4. Alfaki, M.: Models and Solution Methods for the Pooling Problem. Ph.D. thesis, University of Bergen, Department of Informatics, University of Bergen (2012)

  5. Alfaki, M., Haugland, D.: Strong formulations for the pooling problem. J. Glob. Optim. 56, 897–916 (2013)

    Article  MathSciNet  Google Scholar 

  6. Barker, G.P., Carlson, D.: Cones of diagonally dominant matrices. Pac. J. Math. 57(1), 15–32 (1975)

    Article  MathSciNet  Google Scholar 

  7. Ben-Tal, A., Eiger, G., Gershovitz, V.: Global minimization by reducing the duality gap. Math. Program. 63(1–3), 193–212 (1994)

    Article  MathSciNet  Google Scholar 

  8. Drud, A.: CONOPT—A large scale GRG code. ORSA J. Comput. 6, 207–216 (1994)

    Article  Google Scholar 

  9. Gounaris, C.E., Misener, R., Floudas, C.A.: Computational comparison of piecewise-linear relaxations for pooling problems. Ind. Eng. Chem. Res. 48(12), 5742–5766 (2009)

    Article  Google Scholar 

  10. Gupte, A., Ahmed, S., Dey, S.S., Cheon, M.S.: Relaxations and discretizations for the pooling problem. J. Glob. Optim. 67(3), 631–669 (2017)

    Article  MathSciNet  Google Scholar 

  11. Haverly, C.A.: Studies of the behavior of recursion for the pooling problem. ACM SIGMAP Bull. 25, 19–28 (1978)

    Article  Google Scholar 

  12. IBM. IBM ILOG CPLEX user’s manual. Tech. Rep. (2015)

  13. Kim, S., Kojima, M.: Second order cone programming relaxation of nonconvex quadratic optimization problems. Optim. Methods Softw. 15(3–4), 201–224 (2001)

    Article  MathSciNet  Google Scholar 

  14. Kim, S., Kojima, M.: Exact solutions of some nonconvex quadratic optimization problems via SDP and SOCP relaxations. Comput. Optim. Appl. 26, 143–154 (2003)

    Article  MathSciNet  Google Scholar 

  15. Kolodziej, S.P., Grossmann, I.E., Furman, K.C., Sawaya, N.W.: A discretization-based approach for the optimization of the multiperiod blend scheduling problem. Comput. Chem. Eng. 53, 122–142 (2013)

    Article  Google Scholar 

  16. Liberti, L., Pantelides, C.C.: An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms. J. Glob. Optim. 36(2), 161–189 (2006)

    Article  MathSciNet  Google Scholar 

  17. Marandi, A., Dahlc, J., de Klerk, E.: A numerical evaluation of the bounded degree sum-of-squares hierarchy of Lasserre, Toh, and Yang on the pooling problem. Ann. Oper. Res. 265(1), 67–92 (2018)

    Article  MathSciNet  Google Scholar 

  18. Marandi, A., de Klerk, E., Dahlc, J.: Solving sparse polynomial optimization problems with chordal structure using the sparse, bounded-degree sum-of-squares hierarchy. Discrete Appl. Math. (to appear) (2018)

  19. MOSEK ApS. Moset optimization toolbox for MATLAB (2019). https://docs.mosek.com/9.0/toolbox.pdf

  20. Nishi, T.: A semidefinite programming relaxation approach for the pooling problem a semidefinite programming relaxation approach for the pooling problem. Master’s thesis, Kyoto University, Department of Applied Mathematics and Physics, Kyoto University (2010)

  21. Ralph, D.: Nonlinear programming advances in mathematical programming with complementarity constraints. R. Soc. (2007)

  22. Ralph, D., Wright, S.J.: Some properties of regularization and penalization schemes for mpecs. Optim. Methods Softw. 19(5), 527–556 (2004)

    Article  MathSciNet  Google Scholar 

  23. Sturm, J.F.: SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11&12, 625–653 (1999)

    Article  MathSciNet  Google Scholar 

  24. Tütüncü, R.H., Toh, K.C., Todd, M.J.: Solving semidefinite-quadratic-linear programs using SDPT3. Math. Program. 95, 189–217 (2003)

    Article  MathSciNet  Google Scholar 

  25. Todd, M.J.: Semidefinite optimization. Acta Numer. 10, 515–560 (2001)

    Article  MathSciNet  Google Scholar 

  26. Waki, H., Kim, S., Kojima, M., Muramatsu, M., Sugimoto, H.: Algorithm 883: SparsePOP: a sparse semidefinite programming relaxation of polynomial optimization problems. ACM Trans. Math. Softw. 35(2), 15 (2008)

    Article  MathSciNet  Google Scholar 

  27. Yamashita, M., Fujisawa, K., Fukuda, M., Kobayashi, K., Nakata, K., Nakata, M.: Latest developments in the SDPA family for solving large-scale SDPs. In: Handbook on Semidefinite, Conic and Polynomial Optimization, pp. 687–713. Springer, New York (2012)

    Google Scholar 

  28. Yamashita, M., Fujisawa, K., Kojima, M.: Implementation and evaluation of SDPA 6.0 (semidefinite programming algorithm 6.0). Optim. Methods Softw. 18(4), 491–505 (2003)

    Article  MathSciNet  Google Scholar 

  29. Zanni, E.: Can Semidefinite Programming be a Key Approach to the Pooling Problem?. University of Edinburgh, Edinburgh (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunyoung Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

S. Kim: The research was supported by NRF 2017-R1A2B2005119. M. Yamashita: This research was partially supported by JSPS KAKENHI (Grant Number: 15K00032, 18K11176).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimizuka, M., Kim, S. & Yamashita, M. Solving pooling problems with time discretization by LP and SOCP relaxations and rescheduling methods. J Glob Optim 75, 631–654 (2019). https://doi.org/10.1007/s10898-019-00795-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-019-00795-w

Keywords

Mathematics Subject Classification

Navigation