Skip to main content
Log in

Multidimensional frontier visualization based on optimization methods using parallel computations

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In data envelopment analysis, methods for constructing sections of the frontier have been recently proposed to visualize the production possibility set. The aim of this paper is to develop, prove and test the methods for the visualization of production possibility sets using parallel computations. In this paper, a general scheme of the algorithms for constructing sections (visualization) of production possibility set is proposed. In fact, the algorithm breaks the original large-scale problems into parallel threads, working independently, then the piecewise solution is combined into a global solution. An algorithm for constructing a generalized production function is described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Amirteimoori, A., Kordrostami, S.: A distance-based measure of super efficiency in data envelopment analysis: an application to gas companies. J. Glob. Optim. 54(1), 117–128 (2012). https://doi.org/10.1007/s10898-011-9745-7

    Article  MathSciNet  MATH  Google Scholar 

  2. Aparicio, J., Lopez-Espin, J.J., Martinez-Moreno, R., Pastor, J.T.: Benchmarking in data envelopment analysis: an approach based on genetic algorithms and parallel programming. Adv. Oper. Res. 2014, 1–9 (2014). https://doi.org/10.1155/2014/431749

    Article  MathSciNet  MATH  Google Scholar 

  3. Banker, R.D., Charnes, A., Cooper, W.W.: Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 30(9), 1078–1092 (1984). https://doi.org/10.1287/mnsc.30.9.1078

    Article  MATH  Google Scholar 

  4. Barr, R.S., Durchholz, M.L.: Parallel and hierarchical decomposition approaches for solving large-scale data envelopment analysis models. Ann. Oper. Res. 73, 339–372 (1997). https://doi.org/10.1023/A:1018941531019

    Article  MATH  Google Scholar 

  5. Charnes, A., Cooper, W.W., Rhodes, E.: Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2(6), 429–444 (1978). https://doi.org/10.1016/0377-2217(78)90138-8

    Article  MathSciNet  MATH  Google Scholar 

  6. Cooper, W.W., Seiford, L.M., Tone, K.: Data Envelopment Analysis. A Comprehensive Text with Models, Applications, References and DEA-Solver Software, 2nd edn. Springer, New York (2007). https://doi.org/10.1007/978-0-387-45283-8

    Book  MATH  Google Scholar 

  7. Dasgupta, S., Papadimitriou, C.H., Vazirani, U.V.: Algorithms. McGraw-Hill, New York (2006)

    Google Scholar 

  8. Dulá, J., Thrall, R.: A computational framework for accelerating dea. J. Product. Anal. 16(1), 63–78 (2001). https://doi.org/10.1023/A:1011103303616

    Article  Google Scholar 

  9. Dulá, J.H.: A computational study of DEA with massive data sets. Comput. Oper. Res. 35(4), 1191–1203 (2008). https://doi.org/10.1016/j.cor.2006.07.011

    Article  MATH  Google Scholar 

  10. Dulá, J.H., López, F.J.: Preprocessing DEA. Comput. Oper. Res. 36(4), 1204–1220 (2009). https://doi.org/10.1016/j.cor.2008.01.004

    Article  MathSciNet  MATH  Google Scholar 

  11. Emrouznejad, A., Yang, G.: A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Socio Econ. Plan. Sci. 61, 4–8 (2018). https://doi.org/10.1016/j.seps.2017.01.008

    Article  Google Scholar 

  12. Førsund, F.R., Hjalmarsson, L., Krivonozhko, V.E., Utkin, O.B.: Calculation of scale elasticities in dea models: direct and indirect approaches. J. Prod. Anal. 28(1–2), 45–56 (2007). https://doi.org/10.1007/s11123-007-0047-5

    Article  Google Scholar 

  13. Krivonozhko, V.E., Piskunov, A.A., Lychev, A.V.: On comparison of ratio analysis and data envelopment analysis as performance assessment tools. IMA J. Manag. Math. 22(4), 357–370 (2011). https://doi.org/10.1093/imaman/dpr003

    Article  MathSciNet  MATH  Google Scholar 

  14. Krivonozhko, V.E., Utkin, O.B., Safin, M.M., Lychev, A.V.: On some generalization of the DEA models. J. Oper. Res. Soc. 60(11), 1518–1527 (2009). https://doi.org/10.1057/jors.2009.64

    Article  MATH  Google Scholar 

  15. Krivonozhko, V.E., Utkin, O.B., Safin, M.M., Lychev, A.V.: Set-to-set maps in efficiency analysis of complex systems. Comput. Math. Model. 21(4), 425–439 (2010). https://doi.org/10.1007/s10598-010-9082-6

    Article  MathSciNet  MATH  Google Scholar 

  16. Krivonozhko, V.E., Utkin, O.B., Volodin, A.V., Sablin, I.A.: About the structure of boundary points in DEA. J. Oper. Res. Soc. 56(12), 1373–1378 (2005). https://doi.org/10.1057/palgrave.jors.2602009

    Article  MATH  Google Scholar 

  17. Krivonozhko, V.E., Utkin, O.B., Volodin, A.V., Sablin, I.A., Patrin, M.V.: Constructions of economic functions and calculations of marginal rates in DEA using parametric optimization methods. J. Oper. Res. Soc. 55(10), 1049–1058 (2004). https://doi.org/10.1057/palgrave.jors.2601759

    Article  MATH  Google Scholar 

  18. Lotov, A.V., Miettinen, K.: Visualizing the pareto frontier. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.) Multiobjective Optimization: Interactive and Evolutionary Approaches, pp. 213–243. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-88908-3_9

    Chapter  Google Scholar 

  19. Lp\_solve reference guide. http://lpsolve.sourceforge.net/5.5/. Accessed 22 Nov 2018

  20. McMullen, P., Shephard, G.C.: Convex Polytopes and the Upper Bound Conjecture. London Mathematical Society Lecture Note Series, vol. 3. Cambridge University Press, Cambridge (1971)

    MATH  Google Scholar 

  21. Pitaktong, U., Brockett, P.L., Mote, J.R., Rousseau, J.J.: Identification of Pareto-efficient facets in data envelopment analysis. Eur. J. Oper. Res. 109(3), 559–570 (1998). https://doi.org/10.1016/S0377-2217(97)00058-1

    Article  MATH  Google Scholar 

  22. Preparata, F.P., Shamos, M.: Computational Geometry: An Introduction. Monographs in Computer Science. Springer, New York (1985). https://doi.org/10.1007/978-1-4612-1098-6

    Book  MATH  Google Scholar 

  23. Sukhoroslov, O., Volkov, S., Afanasiev, A.: A web-based platform for publication and distributed execution of computing applications. In: 14th International Symposium on Parallel and Distributed Computing, pp. 175–184 (2015). https://doi.org/10.1109/ISPDC.2015.27

  24. Volodin, A.V., Krivonozhko, V.E., Ryzhikh, D.A., Utkin, O.B.: Construction of three-dimensional sections in data envelopment analysis by using parametric optimization algorithms. Comput. Math. Math. Phys. 44(4), 589–603 (2004)

    MathSciNet  Google Scholar 

  25. Yun, Y., Nakayama, H., Yoon, M.: Generation of Pareto optimal solutions using generalized DEA and PSO. J. Glob. Optim. 64(1), 49–61 (2016). https://doi.org/10.1007/s10898-015-0314-3

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (Project No. 17-11-01353).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir E. Krivonozhko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afanasiev, A.P., Krivonozhko, V.E., Lychev, A.V. et al. Multidimensional frontier visualization based on optimization methods using parallel computations. J Glob Optim 76, 563–574 (2020). https://doi.org/10.1007/s10898-019-00812-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-019-00812-y

Keywords

Mathematics Subject Classification

Navigation