Skip to main content
Log in

The joint replenishment problem with trade credits

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

It is a widespread financial practice in procurement management for a supplier aiming to attract customers to offer trade credits when customers make inquiries about the sold products. In this paper, we examine the joint replenishment problem considering trade credits (JRP-TC) under the power-of-two (PoT) policy. We formulate a mathematical model and conduct an analysis that reveals insights into the properties of the optimal objective function. From there, we propose an effective search algorithm that obtains the global optimal solution for the JRP-TC under the PoT policy. Our complexity analysis shows that the JRP-TC and the conventional joint replenishment problem under the PoT policy are pseudo-polynomial time solvable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Please find a table summarizing the abbreviations used in this paper in the leading paragraph of Sect. 2.

References

  1. Aggarwal, S.P., Jaggi, C.K.: Ordering policies of deteriorating items under permissible delay in payments. J. Oper. Res. Soc. 46(5), 658–662 (1995)

    Article  MATH  Google Scholar 

  2. Aljazzar, S.M., Gurtu, A., Jaber, M.Y.: Delay-in-payments—a strategy to reduce carbon emissions from supply chains. J. Clean. Prod. 170, 636–644 (2018)

    Article  Google Scholar 

  3. Chan, C.K., Lee, Y., Goyal, S.: A delayed payment method in co-ordinating a single-vendor multi-buyer supply chain. Int. J. Prod. Econ. 127(1), 95–102 (2010)

    Article  Google Scholar 

  4. Chan, C.K., Lee, Y., Goyal, S.K.: Synchronisation of order cycles of multiple buyers in a supply chain with trade credit policy. Int. J. Oper. Res. 27(4), 562–588 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chu, P., Chung, K.-J., Lan, S.-P.: Economic order quantity of deteriorating items under permissible delay in payments. Comput. Oper. Res. 25(10), 817–824 (1998)

    Article  MATH  Google Scholar 

  6. Chung, K.-J.: A theorem on the determination of economic order quantity under conditions of permissible delay in payments. Comput. Oper. Res. 25(1), 49–52 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chung, K.-J., Goyal, S.K., Huang, Y.-F.: The optimal inventory policies under permissible delay in payments depending on the ordering quantity. Int. J. Prod. Econ. 95(2), 203–213 (2005)

    Article  Google Scholar 

  8. Cohen-Hillel, T., Yedidsion, L.: The periodic joint replenishment problem is strongly \(\cal{NP}\)-hard. Math. Oper. Res. 43(4), 1269–1289 (2018)

    Article  MathSciNet  Google Scholar 

  9. Fung, R.Y.K., Ma, X.: A new method for joint replenishment problems. J. Oper. Res. Soc. 52(3), 358–362 (2001)

    Article  MATH  Google Scholar 

  10. Goyal, S.K.: Determination of optimum packaging frequency of items jointly replenished. Manag. Sci. 21(4), 436–443 (1974)

    Article  Google Scholar 

  11. Goyal, S.K.: Economic order quantity under conditions of permissible delay in payments. J. Oper. Res. Soc. 36(4), 335–338 (1985)

    Article  MATH  Google Scholar 

  12. Goyal, S.K., Satir, A.T.: Joint replenishment inventory control: deterministic and stochastic models. Eur. J. Oper. Res. 38(1), 2–13 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Heydari, J., Rastegar, M., Glock, C.H.: A two-level delay in payments contract for supply chain coordination: the case of credit-dependent demand. Int. J. Prod. Econ. 191, 26–36 (2017)

    Article  Google Scholar 

  14. Huang, Y.-F.: Economic order quantity under conditionally permissible delay in payments. Eur. J. Oper. Res. 176(2), 911–924 (2007)

    Article  MATH  Google Scholar 

  15. Hwang, H., Shinn, S.W.: Retailer’s pricing and lot sizing policy for exponentially deteriorating products under the condition of permissible delay in payments. Comput Oper. Res. 24(6), 539–547 (1997)

    Article  MATH  Google Scholar 

  16. Jackson, P., Maxwell, W., Muckstadt, J.: The joint replenishment problem with a powers-of-two restriction. IIE Trans. 17(1), 25–32 (1985)

    Article  Google Scholar 

  17. Jamal, A., Sarker, B.R., Wang, S.: Optimal payment time for a retailer under permitted delay of payment by the wholesaler. Int. J. Prod. Econ. 66(1), 59–66 (2000)

    Article  Google Scholar 

  18. Kaspi, M., Rosenblatt, M.J.: On the economic ordering quantity for jointly replenished items. Int. J. Prod. Res. 29(1), 107–114 (1991)

    Article  Google Scholar 

  19. Kawale, S., Sanas, Y.: A review on inventory models under trade credit. Int. J. Math. Oper. Res. 11(4), 520–543 (2017)

    Article  MathSciNet  Google Scholar 

  20. Khouja, M., Goyal, S.: A review of the joint replenishment problem literature: 1989–2005. Eur. J. Oper. Res. 186(1), 1–16 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Konur, D., Schaefer, B.: Economic and environmental comparison of grouping strategies in coordinated multi-item inventory systems. J. Oper. Res. Soc. 67(3), 421–436 (2016)

    Article  Google Scholar 

  22. Lee, F.-C., Yao, M.-J.: A global optimum search algorithm for the joint replenishment problem under power-of-two policy. Comput. Oper. Res. 30, 1319–1333 (2003)

    Article  MATH  Google Scholar 

  23. Molamohamadi, Z., Ismail, N., Leman, Z., Zulkifli, N.: Reviewing the literature of inventory models under trade credit contact. Discrete Dyn. Nat. Soc. Article ID 975425 (2014)

  24. Ouyang, L.-Y., Teng, J.-T., Chen, L.-H.: Optimal ordering policy for deteriorating items with partial backlogging under permissible delay in payments. J. Global Optim. 34, 245–271 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ouyang, L.-Y., Teng, J.-T., Goyal, S.K., Yang, C.-T.: An economic order quantity model for deteriorating items with partially permissible delay in payments linked to order quantity. Eur. J. Oper. Res. 194(2), 418–431 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Porras Musalem, E., Dekker, R.: On the efficiency of optimal algorithms for the joint replenishment problem: a comparative study. In: Econometric Institute Research Papers EI 2004-33. Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute (2004)

  27. Roundy, R.: A 0.98-effective lot-sizing rule for a multi-product, multi-stage production/inventory system. Math. Oper. Res. 11(4), 699–727 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shinn, S.W., Hwang, H.: Optimal pricing and ordering policies for retailers under order-size-dependent delay in payments. Comput. Oper. Res. 30(1), 35–50 (2003)

    Article  MATH  Google Scholar 

  29. Silver, E.A.: A simple method of determining order quantities in joint replenishments under deterministic demand. Manag. Sci. 22(12), 1351–1361 (1976)

    Article  MATH  Google Scholar 

  30. Tsao, Y.-C.: Managing multi-echelon multi-item channels with trade allowances under credit period. Int. J. Prod. Econ. 127(2), 226–237 (2010)

    Article  Google Scholar 

  31. Tsao, Y.-C., Liao, L.-W.: An algorithm for joint multi-item replenishment problem under trade credits. In: Proceedings of the 2010 Second International Conference on Computer and Network Technology, ICCNT ’10, pp. 582–586. IEEE Computer Society, Washington (2010)

  32. Tsao, Y.-C., Sheen, G.-J.: A multi-item supply chain with credit periods and weight freight cost discounts. Int. J. Prod. Econ. 135(1), 106–115 (2012)

    Article  Google Scholar 

  33. Tsao, Y.-C., Wang, M.-Y., Lee, P.-L.: Effects of joint replenishment policy on company cost under permissible delay in payments. Math. Comput. Appl. 15(2), 248–258 (2010)

    MathSciNet  MATH  Google Scholar 

  34. van Eijs, M.: A note on the joint replenishment problem under constant demand. J. Oper. Res. Soc. 44(2), 185–191 (1993)

    Article  MATH  Google Scholar 

  35. van Eijs, M., Heuts, R., Kleijnen, J.: Analysis and comparison of two strategies for multi-item inventory systems with joint replenishment costs. Eur. J. Oper. Res. 59(3), 405–412 (1992)

    Article  MATH  Google Scholar 

  36. Viswanathan, S.: A new optimal algorithm for the joint replenishment problem. J. Oper. Res. Soc. 47(7), 936–944 (1996)

    Article  MATH  Google Scholar 

  37. Viswanathan, S.: On optimal algorithms for the joint replenishment problem. J. Oper. Res. Soc. 53(11), 1286–1290 (2002)

    Article  MATH  Google Scholar 

  38. Wildeman, R., Frenk, J., Dekker, R.: An efficient optimal solution method for the joint replenishment problem. Eur. J. Oper. Res. 99(2), 433–444 (1997)

    Article  MATH  Google Scholar 

  39. Wu, C., Zhao, Q.: Supplier–buyer deterministic inventory coordination with trade credit and shelf-life constraint. Int. J. Syst. Sci. Oper. Logist. 1(1), 36–46 (2014)

    Google Scholar 

  40. Zahran, S.K., Jaber, M.Y., Zanoni, S.: The consignment stock case for a vendor and a buyer with delay-in-payments. Comput. Ind. Eng. 98, 333–349 (2016)

    Article  Google Scholar 

  41. Zhang, Q., Dong, M., Luo, J., Segerstedt, A.: Supply chain coordination with trade credit and quantity discount incorporating default risk. Int. J. Prod. Econ. 153, 352–360 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by Ministry of Science and Technology, Taiwan (Grant No. 103-2221-E-415-005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jen-Yen Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Proposition 1

Proof

  1. (1)

    The first derivative of \({\phi }_i^{1}(T)\) is

    $$\begin{aligned} \displaystyle \frac{d}{dT}\left( e_i^1T+f_i^1+\frac{g_i^1}{T}\right) =e_i^1-\frac{g_i^1}{T^2}=\displaystyle \frac{D_i(h_i+p_iI_i^d)}{2}-\frac{A_i}{T^2}. \end{aligned}$$

    The second derivative of \({\phi }_i^{1}(T)\) is

    $$\begin{aligned} \displaystyle \frac{d^2}{(dT)^2}\left( e_i^1T+f_i^1+\frac{g_i^1}{T}\right) =\frac{2g_i^1}{T^3}=\displaystyle \frac{2A_i}{T^3} \end{aligned}$$

    which is strictly positive for \(T>0\). And the result: \(\displaystyle \frac{d^2}{(dT)^2}{\phi }_i^{1}(T) >0 \) implies that \({\phi }_i^1(T)\) is a strictly convex function and its minimum occurs at the stationary point \(\displaystyle \sqrt{\frac{g_i^1}{e^1_i}}=\sqrt{\frac{2A_i}{D_i(h_i+p_iI_i^d)}}\), i.e. \(\displaystyle {\overline{T}}_i^1=\sqrt{\frac{g_i^1}{e^1_i}}=\sqrt{\frac{2A_i}{D_i(h_i+p_iI_i^d)}}\). The first derivative of \({\phi }_i^{2}(T)\) is

    $$\begin{aligned} \displaystyle \frac{d}{dT}\left( e_i^2T+f_i^2+\frac{g_i^2}{T}\right) =e_i^2-\frac{g_i^2}{T^2}=\frac{D_i(h_i+p_iI_i^c)}{2}-\frac{2A_i+p_iD_iM_i^2(I_i^c-I_i^d)}{2T^2}. \end{aligned}$$

    The second derivative of \({\phi }_i^{2}(T)\)

    $$\begin{aligned} \displaystyle \frac{d^2}{(dT)^2}\left( e_i^2T+f_i^2+\frac{g_i^2}{T}\right) =\frac{2g_i^2}{T^3}=\frac{2A_i+p_iD_iM_i^2(I_i^c-I_i^d)}{T^3}. \end{aligned}$$

    and it is strictly positive for \(T>0\). \(\displaystyle \frac{d^2}{(dT)^2} {\phi }_i^{2}(T)>0\) implies that \({\phi }_i^2(T)\) is a convex function and its minimum occurs at the stationary point \(\displaystyle \sqrt{\frac{g_i^2}{e^2_i}}=\sqrt{\frac{2A_i+p_iD_i(M_i)^2(I_i^c-I_i^d)}{D_i(h_i+p_iI_i^c)}}\), i.e. \(\displaystyle {\overline{T}}_i^2\sqrt{\frac{g_i^2}{e^2_i}}=\sqrt{\frac{2A_i+p_iD_i(M_i)^2(I_i^c-I_i^d)}{D_i(h_i+p_iI_i^c)}}\).

  2. (2)

    The long-run average total cost function \({\phi }_i(T)\) is differentiable because

    $$\begin{aligned} \displaystyle \lim _{T\rightarrow (M_i)^{-}}\frac{{\phi }_i(T)-{\phi }_i(M_i)}{T-M_i}= & {} \displaystyle \lim _{T\rightarrow (M_i)^{-}}\frac{e_1^1T+f_i^1+\frac{g_i^1}{T}-e_i^1M_i-f_i^1-\frac{g_i^1}{M_i}}{T-M_i} \\= & {} \displaystyle \lim _{T\rightarrow (M_i)^{-}}\frac{e_1^1\left( T-M_i\right) +g_i^1\left( \frac{1}{T}-\frac{1}{M_i}\right) }{T-M_i} \\= & {} \displaystyle \lim _{T\rightarrow (M_i)^{-}}e_1^1-\frac{g_i^1}{TM_i} \\= & {} \displaystyle e_1^1-\frac{g_i^1}{M_i^2} \\= & {} \displaystyle \frac{-A_i}{M_i^2}+\frac{D_i(h_i+p_iI_i^d)}{2} \end{aligned}$$

    and

    $$\begin{aligned} \displaystyle \lim _{T\rightarrow (M_i)^+}\frac{{\phi }_i(T)-{\phi }_i(M_i)}{T-M_i}= & {} \displaystyle \lim _{T\rightarrow (M_i)^+}\frac{e_i^2T+f_i^2+\frac{g_i^2}{T}-e_i^1M_i-f_i^1-\frac{g_i^1}{M_i}}{T-M_i}\\= & {} \displaystyle \lim _{T\rightarrow (M_i)^+}\frac{e_i^2T-e_i^1M_i}{T-M_i}+\frac{f_i^2-f_i^1}{T-M_i}+\frac{\frac{g_i^2}{T}-\frac{g_i^1}{M_i}}{T-M_i}\\= & {} \displaystyle \lim _{T\rightarrow (M_i)^+}\frac{D_ih_i}{2}-\frac{A_i}{TM_i}+\frac{D_ip_i(I_i^cT-I_i^dM_i)}{2(T-M_i)}\\&\displaystyle +\frac{D_ip_iM_i(I_i^d-I_i^c)}{T-M_i}+\frac{D_ip_iM_i^2(I_i^d-I_i^c)}{2T(T-M_i)}\\= & {} \displaystyle \lim _{T\rightarrow (M_i)^+}\frac{D_ih_i}{2}-\frac{A_i}{TM_i}+\frac{D_ip_i\left( I_i^dM_i+I_i^c\left( T-M_i\right) \right) }{2T}\\= & {} \displaystyle \frac{D_i(h_i+p_iI_i^d)}{2}-\frac{A_i}{M_i^2}. \end{aligned}$$

    The long-run average total cost function \({\phi }_i(T)\) is strictly convex since \(\displaystyle \frac{d}{dT}{\phi }_i(T)\) is strictly increasing from

    • \(\displaystyle \frac{d}{dT}{\phi }_i(T)=\displaystyle \frac{d}{dT}{\phi }_i^1(T)\) is strictly increasing on \(\left( 0,M_i\right] \);

    • \(\displaystyle \frac{d}{dT}{\phi }_i(T)=\displaystyle \frac{d}{dT}{\phi }_i^2(T)\) is strictly increasing on \(\left[ M_i,\infty \right) \);

    • \(\displaystyle \frac{d}{dT}{\phi }_i^1(M_i)=\frac{d}{dT}{\phi }_i^2(M_i)\).

  3. (3)

    The function \({\phi }_i(T)\) is strictly convex, hence it has only one stationary point. We only need to verify that

    $$\begin{aligned} \left. \frac{d}{dT}{\phi }_i(T)\right| _{T={\overline{T}}_i}=0. \end{aligned}$$

    There are three cases: \({\overline{T}}_i^1< M_i\), \({\overline{T}}_i^1 = M_i\) and \({\overline{T}}_i^1>M_i\).

    1. (a)

      If \({\overline{T}}_i^1< M_i\), then \({\overline{T}}_i={\overline{T}}_i^1\). Since

      $$\begin{aligned} \displaystyle \frac{d}{dT}{\phi }_i(T)=\left\{ \begin{array}{ll} \displaystyle \frac{d}{dT}{\phi }_i^1(T) &{}\hbox { if }T<M_i\\ \displaystyle \frac{d}{dT}{\phi }_i^2(T) &{}\hbox { if }T>M_i\\ \end{array} \right. , \end{aligned}$$

      we obtain

      $$\begin{aligned} \left. \frac{d}{dT}{\phi }_i(T)\right| _{T={\overline{T}}_i}=\left. \frac{d}{dT}{\phi }_i^1(T)\right| _{T={\overline{T}}_i}=\left. \frac{d}{dT}{\phi }_i^1(T)\right| _{T={\overline{T}}_i^1}=0. \end{aligned}$$
    2. (b)

      If \({\overline{T}}_i^1= M_i\), then \({\overline{T}}_i={\overline{T}}_i^1=M_i\). Since

      $$\begin{aligned} \left. \displaystyle \frac{d}{dT}{\phi }_i(T)\right| _{T={\overline{T}}_i^1}=\frac{-A_i}{M_i^2}+\frac{D_i(h_i+p_iI_i^d)}{2}=\left. \frac{d}{dT}{\phi }_i^1(T)\right| _{T={\overline{T}}_i^1}, \end{aligned}$$

      we obtain

      $$\begin{aligned} \left. \frac{d}{dT}{\phi }_i(T)\right| _{T={\overline{T}}_i}=\left. \frac{d}{dT}{\phi }_i^1(T)\right| _{T={\overline{T}}_i^1}=0. \end{aligned}$$
    3. (c)

      If \({\overline{T}}_i^1 > M_i\), then \({\overline{T}}_i={\overline{T}}_i^2\). Since

      $$\begin{aligned} \displaystyle \frac{d}{dT}{\phi }_i(T)=\left\{ \begin{array}{ll} \displaystyle \frac{d}{dT}{\phi }_i^1(T) &{}\hbox { if }T<M_i\\ \displaystyle \frac{d}{dT}{\phi }_i^2(T) &{}\hbox { if }T>M_i\\ \end{array} \right. , \end{aligned}$$

      we obtain

      $$\begin{aligned} \left. \frac{d}{dT}{\phi }_i(T)\right| _{T={\overline{T}}_i}=\left. \frac{d}{dT}{\phi }_i^2(T)\right| _{T={\overline{T}}_i}=\left. \frac{d}{dT}{\phi }_i^2(T)\right| _{T={\overline{T}}_i^2}=0. \end{aligned}$$

\(\square \)

1.2 Lemma 1 and its proof

Lemma 1

Suppose \(B_i^1\) is satisfied

$$\begin{aligned} {\phi }_i(B_i^1)-{\phi }_i(2B_i^1)=0. \end{aligned}$$
(27)

Then

  1. (1)

    the solution \(B_i^1\) is unique;

  2. (2)

    there exists a \(\delta >0\) such that

    $$\begin{aligned} \frac{d}{dB} {\phi }_i(B)<0\hbox { and } \frac{d}{dB} {\phi }_i(2B)>0 \end{aligned}$$

    \(\forall B\in (B^1_i-\delta , B^1_i+\delta )\);

  3. (3)

    the inequality holds:

    $$\begin{aligned} {\phi }_i(B) < {\phi }_i(2B)\hbox { for }B> B_i^1; \end{aligned}$$
    (28)
  4. (4)

    the inequality holds:

    $$\begin{aligned} {\phi }_i(B) > {\phi }_i(2B)\hbox { for }B < B_i^1. \end{aligned}$$
    (29)

Proof

  1. (1)

    Suppose \({\overline{T}}_i\) is the minimal solution of \({\phi }_i(T)\) on \((0,\infty )\). Let \(G(B)={\phi }_i(B)-{\phi }_i(2B)\). Since the minimum of \({\phi }_i(2T)\) occurs at \(\displaystyle \frac{{\overline{T}}_i}{2}\), we have

    $$\begin{aligned} {\phi }_i(2{\overline{T}}_i)>{\phi }_i\left( 2\cdot \frac{{\overline{T}}_i}{2}\right) . \end{aligned}$$

    Hence

    $$\begin{aligned} G\left( {\overline{T}}_i\right) ={\phi }_i\left( {\overline{T}}_i\right) -{\phi }_i\left( 2{\overline{T}}_i\right) ={\phi }_i\left( 2\cdot \frac{{\overline{T}}_i}{2}\right) -{\phi }_i\left( 2{\overline{T}}_i\right) <0. \end{aligned}$$

    On the other hand, since the minimum of \({\phi }_i(T)\) occurs on \({\overline{T}}_i\),

    $$\begin{aligned} {\phi }_i\left( \frac{{\overline{T}}_i}{2}\right) >{\phi }_i\left( {\overline{T}}_i\right) . \end{aligned}$$

    Hence

    $$\begin{aligned} G\left( \frac{{\overline{T}}_i}{2}\right) ={\phi }_i\left( \frac{{\overline{T}}_i}{2}\right) -{\phi }_i\left( {\overline{T}}_i\right) ={\phi }_i\left( \frac{{\overline{T}}_i}{2}\right) -{\phi }_i\left( {\overline{T}}_i\right) >0. \end{aligned}$$

    Since \(\displaystyle G\left( {\overline{T}}_i\right) \cdot G\left( \frac{{\overline{T}}_i}{2}\right) <0\), and G(T) is continuous on \(\displaystyle \left[ \frac{{\overline{T}}_i}{2}, {\overline{T}}_i\right] \), by Intermediate Value Theorem, there exists a \(\displaystyle \overline{{\overline{T}}}\in \displaystyle \left( \frac{{\overline{T}}_i}{2}, {\overline{T}}_i\right) \) such that \(G(\overline{{\overline{T}}})=0\). Now, we are going to prove the uniqueness of \(B_{i}^{1}\). Suppose on the contrary.

    • If there would exist \(\displaystyle T^0\in \left( 0, \displaystyle \frac{{\overline{T}}}{2}\right] \) such that \(G(T^0)={\phi }_i(T^0)-{\phi }_i(2T^0)=0\). Since \(T^0\in \left( 0, \displaystyle \frac{{\bar{T}}}{2}\right] \), we can obtain \( T^0 < 2T^0\le {\overline{T}} \). Then \( T^0 < 2T^0\le {\overline{T}} \) and \({\phi }_i(T^0)={\phi }_i(2T^0)\) contradicts to that \({\phi }_i(T)\) is an strictly decreasing function on \(\left( 0, {\overline{T}}\right] \).

    • If there would exist \(T^0\in \left[ {\overline{T}}, \infty \right) \) such that \({\phi }_i(T^0)-{\phi }_i(2T^0)=0\). Since \(T^0\in [{\overline{T}}, \infty )\), we obtain \({\overline{T}}\le T^0< 2T^0\). Then \({\overline{T}}\le T^0< 2T^0\) and \({\phi }_i(T^0)={\phi }_i(2T^0)\) contradict to that \({\phi }_i(T)\) is strictly increasing function on \([{\overline{T}}, \infty )\).

    Therefore, there are no \(T\in \displaystyle \left( 0,\frac{{\overline{T}}_i}{2}\right) \cup \left( {\overline{T}}_i,\infty \right) \) such that \(G(T)=0\).

  2. (2)

    Next, we would prove that \(\exists \delta >0, \forall B\in \left( \overline{{\overline{T}}}-\delta , \overline{{\overline{T}}}+\delta \right) \) such that

    $$\begin{aligned} {\phi }_i'(B)<0 \hbox { and } {\phi }_i'(2B)>0 \end{aligned}$$
    (30)
    1. (a)

      \(\displaystyle \overline{{\overline{T}}}< {\overline{T}}_i\) implies \({\phi }_i'\left( \overline{{\overline{T}}}\right) <0\). Because \({\phi }_i(T)\) is convex, if we choose \(\displaystyle \delta _1={\overline{T}}_i-\overline{{\overline{T}}}\), then \(\displaystyle B\in \left( \overline{{\overline{T}}}-\delta _1, \overline{{\overline{T}}}+\delta _1\right) \) implies that \(\displaystyle {\phi }_i'(B)<0\).

    2. (b)

      \(\displaystyle \frac{{\overline{T}}_i}{2}< \overline{{\overline{T}}}\) implies \({\phi }_i'(2\overline{{\overline{T}}})>0\). Because \({\phi }_i(T)\) is convex, if we choose \(\displaystyle \delta _2=\overline{{\overline{T}}}-\frac{{\overline{T}}_i}{2}\), then \(\displaystyle B\in \left( \overline{{\overline{T}}}-\delta _2, \overline{{\overline{T}}}+\delta _2\right) \) implies that \(\displaystyle 2{\phi }_i'(2B)>0\)

    Let \(\delta =\min \left\{ \delta _1, \delta _2\right\} \), then we obtain (30).

  3. (3), (4)

    By (2), there exists a \(\delta >0\) such that the derivative

    $$\begin{aligned} \displaystyle \frac{d}{dB}\left( {\phi }_i(B)-{\phi }_i(2B)\right) \end{aligned}$$

    is negative for all \(B\in (B_i^1-\delta ,B_i^1+\delta )\). Hence, if \(B\in (B_i^1,B_i^1+\delta )\), then \({\phi }_i(B)-{\phi }_i(2B)<0\). If \(B\in (B_i^1-\delta ,B_i^1)\), then \({\phi }_i(B)-{\phi }_i(2B)>0\). Moreover, with the uniqueness of \(B_i^1\), the sign of \({\phi }_i(B)-{\phi }_i(2B)\) will never change again. Therefore, we obtain that

    $$\begin{aligned} {\phi }_i(B)< {\phi }_i(2B)\hbox { if }B> B_i^1 \\ {\phi }_i(B) > {\phi }_i(2B)\hbox { if }B < B_i^1. \end{aligned}$$

\(\square \)

1.3 Proof of Theorem 2

Proof

With the uniqueness of \(B_i^1\), the sign of \({\phi }_i(B)-{\phi }_i(2B)\) will never change again. Therefore, we obtain that

$$\begin{aligned} {\phi }_i(B)< {\phi }_i(2B)\hbox { if }B> B_i^1 \\ {\phi }_i(B) > {\phi }_i(2B)\hbox { if }B < B_i^1. \end{aligned}$$

Then

$$\begin{aligned} \begin{array}{l} \min \{{\phi }_i(B),{\phi }_i(2B) \}= \left\{ \begin{array}{ll} {\phi }_i(B) &{} \hbox { if }B> B_i^1\\ {\phi }_i(2B) &{} \hbox { if }B < B_i^1. \end{array} \right. \\ \end{array} \end{aligned}$$

Moreover, because of \(B_i^{2^j}\triangleq \displaystyle \frac{B_i^1}{2^j} \) for \(j\in \{1,2,\ldots \}\) and \({\phi }_i(B_i^1)-{\phi }_i(2B_i^1)=0\), we obtain that \( {\phi }_i(2^{j}B_i^{2^j})={\phi }_i(2^{j+1}B_i^{2^j}) \) for \(j\in \{1,2,\ldots \}\). From

$$\begin{aligned} {\phi }_i(B) < {\phi }_i(2B)\hbox { if }B> B_i^1 \end{aligned}$$

and

$$\begin{aligned} {\phi }_i(B) > {\phi }_i(2B)\hbox { if }B < B_i^1, \end{aligned}$$

we obtain

$$\begin{aligned} {\phi }_i(2^{j}B)< {\phi }_i(2^{j+1}B)\hbox { if } 2^{j}B> B_i^{1} \end{aligned}$$

and

$$\begin{aligned} {\phi }_i(2^{j}B)> {\phi }_i(2^{j+1}B)\hbox { if } 2^{j}B< B_i^{1}. \end{aligned}$$

Hence if \(B> B_i^{2^{j}},\forall j\in \{1,2,\ldots \}\), then

$$\begin{aligned} {\phi }_i(2^{j}B)< {\phi }_i(2^{j+1}B); \end{aligned}$$

if \(B< B_i^{2^{j}},\forall j\in \{1,2,\ldots \}\), then

$$\begin{aligned} {\phi }_i(2^{j}B)> {\phi }_i(2^{j+1}B). \end{aligned}$$
  1. (1)

    Since \(B>B_i^1\) implies that \(B>B_i^{2^l}\) for all \(l\in \{0,1,\ldots \}\), we obtain the following inequalities

    $$\begin{aligned} {\phi }_i(B)< {\phi }_i(2B)< \cdots<{\phi }_i(2^{l}B)<{\phi }_i(2^{l+1}B)<\cdots . \end{aligned}$$

    Hence

    $$\begin{aligned} \min _{k_i}{\phi }_i(k_iB)={\phi }_i(B). \end{aligned}$$
  2. (2)

    Since \(B_i^{2^{j}}< B < B_i^{2^{j-1}}\) implies that

    $$\begin{aligned} \cdots<B_i^{2^{j+1}}<B_i^{2^{j}}<B< B_i^{2^{j-1}}<B_i^{2^{j-2}}<\cdots <B_i^{1}, \end{aligned}$$

    we obtain the following inequalities

    $$\begin{aligned} {\phi }_i(2^{j}B)< {\phi }_i(2^{j+1}B) < \cdots \end{aligned}$$

    and

    $$\begin{aligned} {\phi }_i(2^{j}B)< {\phi }_i(2^{j-1}B)< \cdots <{\phi }_i(B). \end{aligned}$$

    Hence

    $$\begin{aligned} \min _{k_i}{\phi }_i(k_iB)={\phi }_i\left( 2^{j}B\right) . \end{aligned}$$
  3. (3)

    From (1), if \(B>B_i^1\), then \(\displaystyle \min _{k_i}{\phi }_i(k_iB)={\phi }_i(B)\) is a strictly convex function on \(\left( B_i^1,\infty \right) \). From (2), if \(B_i^{2^{j}}< B < B_i^{2^{j-1}}\) for some \(j\in \{1,2,\ldots \}\), then \(\displaystyle \min _{k_i}{\phi }_i(k_iB)={\phi }_i\left( 2^{j}B\right) \) is a strictly convex function on \(\left( B_i^{2^{j}}, B_i^{2^{j-1}}\right) \). Hence \(\min _{k_i}{\phi }_i(k_iB)\) is piecewise-convex on \((0,\infty )\).

\(\square \)

1.4 Lemma 2 and its proof

Lemma 2

  1. 1.

    If \({\overline{g}}_i\le 0\), then \( {\overline{f}}_i-\sqrt{\left( {\overline{f}}_i\right) ^2-2{\overline{e}}_i\,{\overline{g}}_i} \le 0.\)

  2. 2.

    \( \displaystyle \frac{{\overline{f}}_i-\sqrt{\left( {\overline{f}}_i\right) ^2-2{\overline{e}}_i\,{\overline{g}}_i}}{2{\overline{e}}_i}\notin \left[ \frac{M_i}{2},M_i\right] . \)

Proof

  1. 1.

    The values of \({\overline{e}}_i\) and \({\overline{f}}_i\) are strictly positive since

    $$\begin{aligned} {\overline{e}}_i=2e_i^2-e_i^1=D_i(h_i+p_iI_c)-\frac{D_i(h_i+p_iI_d)}{2} =\frac{D_i(h_i-p_iI_d+2p_iI_c)}{2}>0 \end{aligned}$$

    and

    $$\begin{aligned} {\overline{f}}_i=f_i^1-f_i^2=-p_iD_iI_dM_i+p_iD_iI_cM_i=p_iD_iM_i(I_c-I_d)>0. \end{aligned}$$

    Hence

    $$\begin{aligned}&{\overline{g}}_i\le 0 \\&\quad \Rightarrow ({\overline{f}}_i)^2-2{\overline{e}}_i\,{\overline{g}}_i\ge ({\overline{f}}_i)^2\\&\quad \Rightarrow \sqrt{({\overline{f}}_i)^2-2{\overline{e}}_i\,{\overline{g}}_i} \ge \sqrt{({\overline{f}}_i)^2}=|{\overline{f}}_i|={\overline{f}}_i\\&\quad \Rightarrow {\overline{f}}_i-\sqrt{({\overline{f}}_i)^2-2{\overline{e}}_i\,{\overline{g}}_i}\le 0.\\ \end{aligned}$$
  2. 2.

    By (1), we can ignore the case: \({\overline{g}}_i \le 0\). Assume \({\overline{g}}_i > 0\). Since

    $$\begin{aligned} x-\sqrt{x^2-yz}<\sqrt{yz} \end{aligned}$$

    holds for \(x>0\), \(y>0\), \(z>0\), \(x^2-yz>0\), we obtain

    $$\begin{aligned} \displaystyle \frac{{\overline{f}}_i-\sqrt{({\overline{f}}_i)^2-2{\overline{e}}_i\,{\overline{g}}_i}}{2{\overline{e}}_i}< \displaystyle \frac{\sqrt{2{\overline{e}}_i\,{\overline{g}}_i}}{2{\overline{e}}_i} =\sqrt{\frac{{\overline{g}}_i}{2{\overline{e}}_i}}. \end{aligned}$$

    Moreover, the inequality \(\displaystyle \sqrt{\frac{{\overline{g}}_i}{2{\overline{e}}_i}}<\frac{M_i}{2}\) holds because

    $$\begin{aligned}&\frac{{\overline{g}}_i}{2{\overline{e}}_i}-\frac{(M_i)^2}{4}=\frac{-4A_i-(M_i)^2h_iD_i-(M_i)^2D_ip_iI_i^d}{8{\overline{e}}_i}<0. \end{aligned}$$

    Hence \( \displaystyle \frac{{\overline{f}}_i-\sqrt{({\overline{f}}_i)^2-2{\overline{e}}_i\,{\overline{g}}_i}}{2{\overline{e}}_i} <\frac{M_i}{2} \) and

    $$\begin{aligned} \displaystyle \frac{{\overline{f}}_i-\sqrt{({\overline{f}}_i)^2-2{\overline{e}}_i\,{\overline{g}}_i}}{2{\overline{e}}_i}\notin \left[ \frac{M_i}{2},M_i\right] . \end{aligned}$$

\(\square \)

1.5 Proof of Proposition 3

Proof

  1. (1)

    Suppose \(\displaystyle T_i^{\alpha }\in \left( 0,\frac{M_i}{2}\right] \). Then

    $$\begin{aligned}&{\phi }_i(T_i^{\alpha })-{\phi }_i\left( 2T_i^{\alpha }\right) \\&\quad ={\phi }_i^1(T_i^{\alpha })-{\phi }_i^1\left( 2T_i^{\alpha }\right) \left( \because T_i^{\alpha }\le \frac{M_i}{2}\Rightarrow T_i^{\alpha }<M_i\right) \\&\quad =e_i^1T_i^{\alpha }+f_i^1+\frac{g_i^1}{T_i^{\alpha }}-2e_i^1T_i^{\alpha }-f_i^1-\frac{g_i^1}{2T_i^{\alpha }}\\&\quad =-e_i^1T_i^{\alpha }+\frac{g_i^1}{T_i^{\alpha }}-\frac{g_i^1}{2T_i^{\alpha }}\\&\quad =-e_i^1\sqrt{\frac{g_i^1}{2e_i^1}}+g_i^1\sqrt{\frac{2e_i^1}{g_i^1}}-\frac{g_i^1}{2}\sqrt{\frac{2e_i^1}{g_i^1}}=0\\ \end{aligned}$$
  2. (2)

    Suppose \(T_i^{\beta }\in \left[ \frac{M_i}{2},M_i\right] \). Then

    $$\begin{aligned}&{\phi }_i(T_i^{\beta })-{\phi }_i\left( 2T_i^{\beta }\right) \\&\quad ={\phi }_i^1(T_i^{\beta })-{\phi }_i^2\left( 2T_i^{\beta }\right) \left( \because \frac{M_i}{2}\le T_i^{\beta }\le M_i\right) \\&\quad =e_i^1T_i^{\beta }+f_i^1+\frac{g_i^1}{T_i^{\beta }}-2e_i^2T_i^{\beta }-f_i^2-\frac{g_i^2}{2T_i^{\beta }}\\&\quad =T_i^{\beta }\left( e_i^1-2e_i^2\right) +\left( f_i^1-f_i^2\right) +\left( \frac{2g_i^1-g_i^2}{2T_i^{\beta }}\right) \\&\quad =-{\overline{e}}_iT_i^{\beta }+{\overline{f}}_i+\left( \frac{-{\overline{g}}_i}{2T_i^{\beta }}\right) =0 \end{aligned}$$
  3. (3)

    Suppose \(T_i^{\gamma }\ge M_i\). Then

    $$\begin{aligned}&{\phi }_i(T_i^{\gamma })-{\phi }_i\left( 2T_i^{\gamma }\right) \\&\quad ={\phi }_i^2(T_i^{\gamma })-{\phi }_i^2\left( 2T_i^{\gamma }\right) \left( \because T_i^{\gamma }\ge M_i\Rightarrow T_i^{\gamma }>\frac{M_i}{2}\right) \\&\quad =e_i^2T_i^{\gamma }+f_i^2+\frac{g_i^2}{T_i^{\gamma }}-2e_i^2T_i^{\gamma }-f_i^2-\frac{g_i^2}{2T_i^{\gamma }}\\&\quad =-e_i^2T_i^{\gamma }+\frac{g_i^2}{T_i^{\gamma }}-\frac{g_i^2}{2T_i^{\gamma }}\\&\quad =-e_i^2\sqrt{\frac{g_i^2}{2e_i^2}}+g_i^2\sqrt{\frac{2e_i^2}{g_i^2}}-\frac{g_i^1}{2}\sqrt{\frac{2e_i^1}{g_i^1}}\\&\quad =-\sqrt{\frac{e_i^2g_i^2}{2}}+2\sqrt{\frac{e_i^2g_i^2}{2}}-\sqrt{\frac{e_i^2g_i^2}{2}}\\&\quad =0 \end{aligned}$$
  4. (4)

    If one of the conditions \(\displaystyle T_i^{\alpha }\in \left( 0,\frac{M_i}{2}\right] \), \(\displaystyle T_i^{\beta }\in \left[ \frac{M_i}{2},M_i\right] \), \(\displaystyle T_i^{\gamma }\ge M_i\) holds, then, from (1)–(3), there are at least two of \(T_i^{\alpha }\), \(T_i^{\beta }\), \(T_i^{\gamma }\) are \(B^1_i\) which contradicts to the uniqueness of \(B^1_{i}\) in Proposition 1.

  5. (5)

    From (1)–(4), we can obtain the result.

\(\square \)

1.6 Proof of Proposition 4

Proof

By the definition of \({\overline{J}}_1,{\overline{J}}_2,\ldots ,{\overline{J}}_{n-1}\), we have

$$\begin{aligned} B_{\tau _{n}}^1\in \left[ B_{i}^{2^{{\overline{J}}_i+1}}, B_{i}^{2^{{\overline{J}}_i}}\right) , \forall i\in \{1,2,\ldots ,n-1\} \end{aligned}$$
(31)

After sorting the set \(\left\{ B_{\tau _n}^{1},B_{{n-1}}^{2^{{\overline{J}}_{n-1}}}, B_{{n-2}}^{2^{{\overline{J}}_{n-2}}}, \cdots , B_{{1}}^{2^{{\overline{J}}_{1}}}\right\} \), we obtain a bijective function \(\sigma :\Lambda \rightarrow \Lambda \) such that

$$\begin{aligned} B_{\sigma _{n}}^{2^{{\overline{J}}_{\sigma _{n}}}} \le B_{\sigma _{n-1}}^{2^{{\overline{J}}_{\sigma _{n-1}}}} \le B_{\sigma _{n-2}}^{2^{{\overline{J}}_{\sigma _{n-2}}}} \le \cdots \le B_{\sigma _{1}}^{2^{{\overline{J}}_{\sigma _{1}}}}. \end{aligned}$$
(32)

Note that \(B_{\sigma _{n}}^{2^{{\overline{J}}_{\sigma _{n}}}}=B_{\tau _n}^{1}\). For short notation, we define

$$\begin{aligned} {\widetilde{B}}_i=B_{\sigma _{i}}^{2^{{\overline{J}}_{\sigma _{i}}}},\forall i\in \Lambda . \end{aligned}$$

Then combining (31) with (32), we obtain

$$\begin{aligned} \frac{{\widetilde{B}}_1}{2} \le {\widetilde{B}}_n \le {\widetilde{B}}_{n-1} \le {\widetilde{B}}_{n-2} \le \cdots \le {\widetilde{B}}_{1}. \end{aligned}$$
(33)

Since \(B_{\tau _n}^{1}\) is smaller than the junction points \(B_{\sigma _{i}}^{2^{j}}\) for all \(i\in \{1,2,\ldots n-1\}\) and \(j\in \{0,1,\ldots ,{\overline{J}}_{\sigma _{i}}\}\), we obtain \(w_{{\bar{l}}}=B_{\tau _n}^{1}={\widetilde{B}}_n\) and \(w_{{\bar{l}}+1}=\displaystyle \frac{{\widetilde{B}}_1}{2}\) where

$$\begin{aligned} \displaystyle {\bar{l}}=1+\sum _{i=1}^{n-1}(1+{\overline{J}}_{\sigma _{i}})=n+\sum _{i=1}^{n-1}{\overline{J}}_{\sigma _{i}}=n-1+\sum _{i=1}^{n}{\overline{J}}_{\sigma _{i}}=n-1+\sum _{i=1}^{n}{\overline{J}}_{i}. \end{aligned}$$

Moreover, the inequalities (33) can be extended to

$$\begin{aligned} \frac{{\widetilde{B}}_1}{2^{l'+1}} \le \frac{{\widetilde{B}}_{n}}{2^{l'}} \le \frac{{\widetilde{B}}_{n-1}}{2^{l'}} \le \frac{{\widetilde{B}}_{n-2}}{2^{l'}} \le \cdots \le \frac{{\widetilde{B}}_{1}}{2^{l'}}, \forall l'\in \{1,2,\ldots \}. \end{aligned}$$
(34)

Since \(w_{{\bar{l}}+1}=\displaystyle \frac{{\widetilde{B}}_1}{2}\), we have \(w_{{\bar{l}}+(l'-1)n+i}=\displaystyle \frac{{\widetilde{B}}_{i}}{2^{l'}}\) and \(w_{{\overline{l}}}=2w_{{\overline{l}}+n}\). Suppose \(l\ge {\overline{l}}+1\), then there exist \(l'\in \{1,2,\ldots \}\) and \(i\in \Lambda \) such that \(l={\overline{l}}+(l'-1)n+i\). The equalities

$$\begin{aligned} w_{l}=w_{{\overline{l}}+(l'-1)n+i}=\displaystyle \frac{{\widetilde{B}}_{i}}{2^{l'}}=2\frac{{\widetilde{B}}_{i}}{2^{l'+1}}=2w_{{\overline{l}}+l'n+i}=2w_{l+n}. \end{aligned}$$

hold. Therefore, \(w_{l}=2w_{l+n}\) hold for all \(l\ge {\overline{l}}\).

  1. (i)

    Suppose \(B\in [w_{{\bar{l}}+(l'-1)n+i+1},w_{{\bar{l}}+(l'-1)n+i})\) for some \(l'\in \{1,2,\ldots \}\) and \(i\ne n\). Then \(\displaystyle B\in \left[ \frac{{\widetilde{B}}_{i+1}}{2^{l'}},\frac{{\widetilde{B}}_{i}}{2^{l'}}\right) \) and \(2^{l'} B\in \left[ {\widetilde{B}}_{i+1},{\widetilde{B}}_{i}\right) \).

    • Given \(r\in \{1,2,\ldots ,i\}\). Then \(\displaystyle 2^{l'}B\in \left[ \frac{{\widetilde{B}}_{r}}{2},{\widetilde{B}}_{r}\right) \) holds, since

      $$\begin{aligned} \frac{{\widetilde{B}}_{r}}{2}\le \cdots \le \frac{{\widetilde{B}}_{1}}{2}\le {\widetilde{B}}_{n}\le \cdots \le {\widetilde{B}}_{i+1}\le {\widetilde{B}}_{i} \le {\widetilde{B}}_{r}. \end{aligned}$$

      Moreover,

      $$\begin{aligned}&\displaystyle 2^{l'}B\in \left[ \frac{{\widetilde{B}}_{r}}{2},{\widetilde{B}}_{r}\right) \Rightarrow B\in \left[ \frac{{\widetilde{B}}_{r}}{2^{l'+1}},\frac{{\widetilde{B}}_{r}}{2^{l'}}\right) \Rightarrow \left\{ \begin{array}{ll} B\in \left[ B_{\sigma _{r}}^{2^{{\overline{J}}_{\sigma _{r}}+l'+1}},B_{\sigma _{r}}^{2^{{\overline{J}}_{\sigma _{r}}+l'}}\right) \\ \displaystyle \frac{B}{2}\in \left[ B_{\sigma _{r}}^{2^{{\overline{J}}_{\sigma _{r}}+l'+2}},B_{\sigma _{r}}^{2^{{\overline{J}}_{\sigma _{r}}+l'+1}}\right) \\ \end{array} \right. \\&\quad \Rightarrow \left\{ \begin{array}{ll} \displaystyle {\overline{k}}_{\sigma _r}(B)={2^{{\overline{J}}_{\sigma _{r}}+l'+1}}\\ \displaystyle {\overline{k}}_{\sigma _r}\left( \frac{B}{2}\right) ={2^{{\overline{J}}_{\sigma _{r}}+l'+2}}\\ \end{array} \right. \Rightarrow {\overline{k}}_{\sigma _r}(B)=\frac{1}{2}{\overline{k}}_{\sigma _r}\left( \frac{B}{2}\right) . \end{aligned}$$
    • Given \(r\in \{i+1,i+2,\ldots ,n\}\). Then \(2^{l'}B\in \left[ {\widetilde{B}}_{r},2{\widetilde{B}}_{r},\right) \) holds, since

      $$\begin{aligned} {\widetilde{B}}_{r} \le {\widetilde{B}}_{i+1}\le {\widetilde{B}}_{i} \le {\widetilde{B}}_{1} \le 2{\widetilde{B}}_{n} \le 2{\widetilde{B}}_{r}. \end{aligned}$$

      Moreover,

      $$\begin{aligned}&\displaystyle 2^{l'}B\in \left[ {\widetilde{B}}_{r},2{\widetilde{B}}_{r}\right) \Rightarrow B\in \left[ \frac{{\widetilde{B}}_{r}}{2^{l'}},\frac{{\widetilde{B}}_{r}}{2^{l'-1}}\right) \Rightarrow \left\{ \begin{array}{ll} B\in \left[ B_{\sigma _{r}}^{2^{{\overline{J}}_{\sigma _{r}}+l'}},B_{\sigma _{r}}^{2^{{\overline{J}}_{\sigma _{r}}+l'-1}}\right) \\ \displaystyle \frac{B}{2}\in \left[ B_{\sigma _{r}}^{2^{{\overline{J}}_{\sigma _{r}}+l'+1}},B_{\sigma _{r}}^{2^{{\overline{J}}_{\sigma _{r}}+l'}}\right) \\ \end{array} \right. \\&\quad \Rightarrow \left\{ \begin{array}{ll} \displaystyle {\overline{k}}_{\sigma _r}(B)={2^{{\overline{J}}_{\sigma _{r}}+l'}}\\ \displaystyle {\overline{k}}_{\sigma _r}\left( \frac{B}{2}\right) ={2^{{\overline{J}}_{\sigma _{r}}+l'+1}}\\ \end{array} \right. \Rightarrow {\overline{k}}_{\sigma _r}(B)=\frac{1}{2}{\overline{k}}_{\sigma _r}\left( \frac{B}{2}\right) . \end{aligned}$$
  2. (ii)

    Suppose \(B\in [w_{{\bar{l}}+(l'-1)n+i+1},w_{{\bar{l}}+(l'-1)n+i})\) for some \(l\in \{1,2,\ldots \}\) and \(i= n\). Then \(\displaystyle B\in \left[ \frac{{\widetilde{B}}_{1}}{2^{l'+1}},\frac{{\widetilde{B}}_{n}}{2^{l'}}\right) \) and \(\displaystyle 2^{l'} B\in \left[ \frac{{\widetilde{B}}_{1}}{2},{\widetilde{B}}_{n}\right) \).

    • Given \(r\in \{1,2,\ldots ,n\}\). Then \(\displaystyle 2^lB\in \left[ \frac{{\widetilde{B}}_{r}}{2},{\widetilde{B}}_{r}\right) \) holds, since

      $$\begin{aligned} \frac{{\widetilde{B}}_{r}}{2}\le \cdots \le \frac{{\widetilde{B}}_{1}}{2}\le {\widetilde{B}}_{n}\le \cdots \le {\widetilde{B}}_{r}. \end{aligned}$$

      Moreover,

      $$\begin{aligned}&\displaystyle 2^{l'}B\in \left( \frac{{\widetilde{B}}_{r}}{2},{\widetilde{B}}_{r}\right) \Rightarrow B\in \left( \frac{{\widetilde{B}}_{r}}{2^{l'+1}},\frac{{\widetilde{B}}_{r}}{2^{l'}}\right) \Rightarrow \left\{ \begin{array}{ll} B\in \left[ B_{\sigma _{r}}^{2^{{\overline{J}}_{\sigma _{r}}+l'+1}},B_{\sigma _{r}}^{2^{{\overline{J}}_{\sigma _{r}}+l'}}\right) \\ \displaystyle \frac{B}{2}\in \left[ B_{\sigma _{r}}^{2^{{\overline{J}}_{\sigma _{r}}+l'+2}},B_{\sigma _{r}}^{2^{{\overline{J}}_{\sigma _{r}}+l'+1}}\right) \\ \end{array} \right. \\&\quad \Rightarrow \left\{ \begin{array}{ll} \displaystyle {\overline{k}}_{\sigma _r}(B)={2^{{\overline{J}}_{\sigma _{r}}+l'+1}}\\ \displaystyle {\overline{k}}_{\sigma _r}\left( \frac{B}{2}\right) ={2^{{\overline{J}}_{\sigma _{r}}+l'+2}}\\ \end{array} \right. \Rightarrow {\overline{k}}_{\sigma _r}(B)=\frac{1}{2}{\overline{k}}_{\sigma _r}\left( \frac{B}{2}\right) . \end{aligned}$$

Therefore, (18) holds for \(\displaystyle {\bar{l}}=n-1+\sum _{i=1}^{n}{\overline{J}}_i\). \(\square \)

1.7 Proof of Theorem 5

Proof

By Proposition 4, for all \(l\ge {\bar{l}}\),

$$\begin{aligned} w_{l}=2w_{l+n} \end{aligned}$$

and

$$\begin{aligned} {\overline{k}}_i(B)=\frac{1}{2}{\overline{k}}_i(B/2), \forall i\in \Lambda , B\in (0,w_{{\overline{l}}+1}). \end{aligned}$$

Assume \(B\in (0,w_{{\overline{l}}+1})\). Then \(\displaystyle B{\overline{k}}_i(B)=\left( \frac{B}{2}\right) \left( 2{\overline{k}}_i\left( B\right) \right) =\left( \frac{B}{2}\right) \left( {\overline{k}}_i\left( \frac{B}{2}\right) \right) \) for all \(i\in \Lambda \). Hence

$$\begin{aligned} {\phi }_i(B{\overline{k}}_i(B))={\phi }_i\left( {\overline{k}}_i\left( \frac{B}{2}\right) \left( \frac{B}{2}\right) \right) \end{aligned}$$

for all \(i\in \Lambda \). Therefore,

$$\begin{aligned} \frac{A_0}{B/2}+\sum _{i=1}^{n}{\phi }_i\left( {\overline{k}}_i\left( \frac{B}{2}\right) \left( \frac{B}{2}\right) \right) \gvertneqq \frac{A_0}{B}+\sum _{i=1}^{n}{\phi }_i(B{\overline{k}}_i(B)), \forall B<w_{{\overline{l}}} \end{aligned}$$

implies that the optimal solution \(B^*\) must be greater than \(w_{{\overline{l}}+n}\). Similarly, this result can be extended such that the optimal solution \(B^*\) must be greater than \(w_{{\overline{l}}+1}\). \(\square \)

1.8 Proof of Proposition 6

Proof

  1. (1)

    If \(w_{l-1}\le \displaystyle \frac{M_{\rho _{n}}}{{\overline{k}}_{\rho _{n}}^{l}}\), then there are no break points in the interval \([w_{l},w_{l-1}]\) and for all \(i\in \Lambda \)

    $$\begin{aligned} B\le w_{l-1} \Rightarrow B< \frac{M_{\rho _{i}}}{{{\overline{k}}_{\rho _{i}}^{l}}} \Rightarrow {\overline{k}}_{\rho _{i}}^{l} B < M_{\rho _{i}}. \end{aligned}$$
    (35)

    The explicit form of the objective function \(\displaystyle \frac{A_0}{B}+\sum _{i=1}^{n}{\phi }_i({\overline{k}}_i(B) B)\) is

    $$\begin{aligned} \begin{array}{rcl} \displaystyle \frac{A_0}{B}+\sum _{i=1}^{n}{\phi }_i({\overline{k}}_i(B) B)&{}=&{}\displaystyle \frac{A_0}{B}+\sum _{i=1}^{n}{\phi }_{\rho _{i}}({\overline{k}}_{\rho _i}(B) B)\\ &{}=&{}\displaystyle \frac{A_0}{B}+\sum _{i=1}^{n}{\phi }_{\rho _{i}}({\overline{k}}_{\rho _{i}}^{l} B)\\ &{}=&{}\displaystyle \sum _{i=1}^{n}{\phi }_{\rho _{i}}^1({\overline{k}}_{\rho _{i}}^{l} B)\quad (\because (35))\\ &{}=&{}\displaystyle E_{n}^lB+F_{n}^l+\frac{G_{n}^l}{B}.\\ \end{array} \end{aligned}$$
  2. (2)

    If \(\displaystyle \frac{M_{\rho _{1}}}{{{\overline{k}}_{\rho _{1}}^{l}}}<w_{l}\), then there are also no break points in the interval \([w_{l},w_{l-1}]\) and for all \(i\in \Lambda \)

    $$\begin{aligned} w_{l}\le B\Rightarrow \frac{M_{\rho _{i}}}{{{\overline{k}}_{\rho _{i}}^{l}}}< B \Rightarrow M_{\rho _{i}}<{\overline{k}}_{\rho _{i}}^{l}B \end{aligned}$$
    (36)

    The explicit form of the objective function \(\displaystyle \frac{A_0}{B}+\sum _{i=1}^{n}{\phi }_i({\overline{k}}_i(B) B)\) is

    $$\begin{aligned} \begin{array}{rcl} \displaystyle \frac{A_0}{B}+\sum _{i=1}^{n}{\phi }_i({\overline{k}}_i(B) B)&{}=&{}\displaystyle \frac{A_0}{B}+\sum _{i=1}^{n}{\phi }_{\rho _{i}}({\overline{k}}_{\rho _{i}}^{l} B)\\ &{}=&{}\displaystyle \frac{A_0}{B}+\sum _{i=1}^{n}{\phi }_{\rho _{i}}^2({\overline{k}}_{\rho _{i}}^{l} B)\quad (\because (36))\\ &{}=&{}\displaystyle E_{0}^lB+F_{0}^l+\frac{G_{0}^l}{B}.\\ \end{array} \end{aligned}$$
  3. (3)

    If \(w_{l-1}\ge \displaystyle \frac{M_{\rho _{n}}}{{{\overline{k}}_{\rho _{n}}^{l}}}\), we define \(\displaystyle {\underline{j}}\) as the smallest index \(i\in \Lambda \) such that \(\displaystyle \frac{M_{\rho _{i}}}{{{\overline{k}}_{\rho _{i}}^l}}\le w_{l-1}\), i.e.,

    $$\begin{aligned} \displaystyle {\underline{j}} = \min _{i\in \Lambda }\left\{ i\left| \displaystyle \frac{M_{\rho _{i}}}{{{\overline{k}}_{\rho _{i}}^{l}}}\le w_{l-1}\right. \right\} . \end{aligned}$$

    If \(\displaystyle \frac{M_{\rho _{1}}}{{\overline{k_{\rho _{1}}^{l}}}}\ge w_{l}\), we define \(\displaystyle {\overline{j}}\) as the largest index \(i\in \Lambda \) such that \(\displaystyle w_{l}\le \frac{M_{\rho _{i}}}{{{\overline{k}}_{\rho _{i}}^{l}}}\), i.e.,

    $$\begin{aligned} \displaystyle {\overline{j}} = \max _{i\in \Lambda }\left\{ i\left| \displaystyle w_{l}\le \frac{M_{\rho _{i}}}{{{\overline{k}}_{\rho _{i}}^{l}}}\right. \right\} . \end{aligned}$$

    Hence if \(w_{l-1}\ge \displaystyle \frac{M_{\rho _{n}}}{{{\overline{k}}_{\rho _{n}}^{l}}}\) and \(\displaystyle \frac{M_{\rho _{1}}}{{{\overline{k}}_{\rho _{1}}^{l}}}\ge w_{l}\), then there are

    $$\begin{aligned} {\overline{j}}-{\underline{j}}+1 \end{aligned}$$

    break points in the interval \([w_{l},w_{l-1}]\). Hence we consider the following \({\overline{j}}-{\underline{j}}+2\) subintervals

    $$\begin{aligned} \displaystyle \left( \frac{M_{\rho _{{\underline{j}}}}}{{\overline{k}}_{\rho _{{\underline{j}}}}^{l}}, w_{l-1}\right) , \left\{ \displaystyle \left( \frac{M_{\rho _{{\underline{j}}+j-1}}}{{\overline{k}}_{\rho _{{\underline{j}}+j-1}}^{l}} , \frac{M_{\rho _{{\underline{j}}+j-2}}}{{\overline{k}}_{\rho _{{\underline{j}}+j-2}}^{l}} \right) \right\} _{j\in \{2,3,\ldots ,{\overline{j}}-{\underline{j}}+1\}}, \displaystyle \left( w_{l}, \frac{M_{\rho _{{\overline{j}}}}}{{\overline{k}}_{\rho _{{\overline{j}}}}^{l}}\right) \end{aligned}$$
    (37)

    of \([w_{l},w_{l-1}]\). Similar to the cases: \(w_{l-1}<\displaystyle \frac{M_{\rho _{n}}}{{{\overline{k}}_{\rho _{n}}^{l}}}\) and \(\displaystyle \frac{M_{\rho _{1}}}{{{\overline{k}}_{\rho _{1}}^{l}}}<w_{l}\), in every subinterval of (37), we describe the explicit form of the objective function \(\displaystyle \frac{A_0}{B}+\sum _{i=1}^{n}{\phi }_i({\overline{k}}_i(B) B)\) as follows.

    • Suppose \(B\in \displaystyle \left( \frac{M_{\rho _{{\underline{j}}}}}{{\overline{k}}_{\rho _{{\underline{j}}}}}, w_{l-1}\right) \). Hence, if \(i\le {\underline{j}}-1\), then \({\phi }_{\rho _{i}}({\overline{k}}_{\rho _{i}}^{l} B)={\phi }_{\rho _{i}}^1({\overline{k}}_{\rho _{i}}^{l} B)\). Otherwise, \({\phi }_{\rho _{i}}({\overline{k}}_{\rho _{i}}^{l} B)={\phi }_{\rho _{i}}^2({\overline{k}}_{\rho _{i}}^{l} B)\). Therefore,

    $$\begin{aligned} \begin{array}{rcl} \displaystyle \frac{A_0}{B}+\sum _{i=1}^{n}{\phi }_i({\overline{k}}_i(B) B) &{}=&{}\displaystyle \frac{A_0}{B}+\sum _{i=1}^{{\underline{j}}-1}{\phi }_{\rho _{i}}^{1}({\overline{k}}_{\rho _{i}}^{l} B) +\sum _{i={\underline{j}}}^{n} {\phi }_{\rho _{i}}^{2}({\overline{k}}_{\rho _{i}}^{l} B)\\ &{}=&{}\displaystyle E_{{\underline{j}}-1}^{l}B+F_{{\underline{j}}-1}^{l}+\frac{G_{{\underline{j}}-1}^{l}}{B}.\\ \end{array} \end{aligned}$$
    • Suppose \(j\in \{2,3,\ldots ,{\overline{j}}-{\underline{j}}+1\}\) and \(B\in \displaystyle \left( \frac{M_{\rho _{{\underline{j}}+j-1}}}{{\overline{k}}_{\rho _{{\underline{j}}+j-1}}} , \frac{M_{\rho _{{\underline{j}}+j-2}}}{{\overline{k}}_{\rho _{{\underline{j}}+j-2}}} \right) \). Hence, if \(i\le {\underline{j}}+j-2\), then \({\phi }_{\rho _{i}}({\overline{k}}_{\rho _{i}}^{l} B)={\phi }_{\rho _{i}}^1({\overline{k}}_{\rho _{i}}^{l} B)\). Otherwise, \({\phi }_{\rho _{i}}({\overline{k}}_{\rho _{i}}^{l} B)={\phi }_{\rho _{i}}^2({\overline{k}}_{\rho _{i}}^{l}B)\). Therefore,

    $$\begin{aligned} \begin{array}{rcl} \displaystyle \frac{A_0}{B}+\sum _{i=1}^{n}{\phi }_i({\overline{k}}_i(B) B)&{}=&{}\displaystyle \frac{A_0}{B}+\sum _{i=1}^{{\underline{j}}+j-2}{\phi }_{\rho _{i}}^{1}({\overline{k}}_{\rho _{i}}^{l} B) +\sum _{i={\underline{j}}+j-1}^{n} {\phi }_{\rho _{i}}^{2}({\overline{k}}_{\rho _{i}}^{l} B)\\ &{}=&{}\displaystyle E_{{\underline{j}}+j-2}^{l}B+F_{{\underline{j}}+j-2}^{l}+\frac{G_{{\underline{j}}+j-2}^{l}}{B}.\\ \end{array} \end{aligned}$$
    • Suppose \(B\in \displaystyle \left( w_{l}, \frac{M_{\rho ({\overline{j}})}}{{\overline{k}}_{\rho ({\overline{j}})}}\right) \). Hence, if \(i\le {\overline{j}}\), then \({\phi }_{\rho _{i}}({\overline{k}}_{\rho _{i}}^{l} B)={\phi }_{\rho _{i}}^1({\overline{k}}_{\rho _{i}}^{l} B)\). Otherwise, \({\phi }_{\rho _{i}}(\overline{k_{\rho _{i}}^{l} }B)={\phi }_{\rho _{i}}^2({\overline{k}}_{\rho _{i}}^{l} B)\). Therefore,

    $$\begin{aligned} \begin{array}{rcl} \displaystyle \frac{A_0}{B}+\sum _{i=1}^{n}{\phi }_i({\overline{k}}_i(B) B)&{}=&{}\displaystyle \frac{A_0}{B}+\sum _{i=1}^{{\overline{j}}}{\phi }_{\rho _{i}}^{1}({\overline{k}}_{\rho _{i}}^{l} B) +\sum _{i={\overline{j}}+1}^{n} {\phi }_{\rho _{i}}^{2}({\overline{k}}_{\rho _{i}}^{l} B)\\ &{}=&{}\displaystyle E_{{\overline{j}}}^{l}B+F_{{\overline{j}}}^{l}+\frac{G_{{\overline{j}}}^{l}}{B}.\\ \end{array} \end{aligned}$$

\(\square \)

1.9 Proof of Theorem 7

Proof

  1. (1)

    By Proposition 6,

    $$\begin{aligned}&w_{l-1}<\displaystyle \frac{M_{\rho {(n)}}}{{k_{\rho {(n)}}}} \Rightarrow \frac{A_0}{B}+\sum _{i=1}^{n}{\phi }_i({\overline{k}}_i(B) B)=E_n^{l}B+F_n^{l}+\frac{G_n^{l}}{B}\\&\quad \Rightarrow \frac{d}{dB}\left( \frac{A_0}{B}+\sum _{i=1}^{n}{\phi }_i({\overline{k}}_i(B) B) \right) =E_n^{l}-\frac{G_n^{l}}{B^2}. \end{aligned}$$

    Hence the stationary point of \(\displaystyle \frac{A_0}{B}+\sum _{i=1}^{n}{\phi }_i({\overline{k}}_i(B) B) \) is \(\displaystyle \sqrt{\frac{G_n^{l}}{E_n^{l}}}\).

  2. (1a)

    Since \(\displaystyle \sqrt{\frac{G_n^{l}}{E_n^{l}}} <w_{l}\) and the objective function \(\displaystyle \frac{A_0}{B}+\sum _{i=1}^{n}{\phi }_i({\overline{k}}_i(B) B)\) is strictly convex, the optimal solution of (24) is \(w_{l}\).

  3. (1b)

    Since \(\displaystyle \sqrt{\frac{G_n^{l}}{E_n^{l}}}\in [w_{l}, w_{l-1}]\) and the objective function \(\displaystyle \frac{A_0}{B}+\sum _{i=1}^{n}{\phi }_i({\overline{k}}_i(B) B)\) is strictly convex, the optimal solution of (24) is \(\sqrt{\frac{G_{n}^{l}}{E_{n}^{l}}}\).

  4. (1c)

    Since \(\sqrt{\frac{G_{n}^{l}}{E_{n}^{l}}}> w_{l-1}\) and the objective function \(\displaystyle \frac{A_0}{B}+\sum _{i=1}^{n}{\phi }_i({\overline{k}}_i(B) B)\) is strictly convex, the optimal solution of (24) is \(w_{l-1}\).

  5. (2)

    By Proposition 6,

    $$\begin{aligned}&\displaystyle \frac{M_{\rho {(1)}}}{{k_{\rho {(1)}}}}<w_{l} \Rightarrow \frac{A_0}{B}+\sum _{i=1}^{n}{\phi }_i({\overline{k}}_i(B) B)=E_0^{l}B+F_0^{l}+\frac{G_0^{l}}{B}\\&\quad \Rightarrow \frac{d}{dB}\left( \frac{A_0}{B}+\sum _{i=1}^{n}{\phi }_i({\overline{k}}_i(B) B) \right) =E_0^{l}-\frac{G_0^{l}}{B^2}. \end{aligned}$$

    Hence the stationary point of \(\displaystyle \frac{A_0}{B}+\sum _{i=1}^{n}{\phi }_i({\overline{k}}_i(B) B)\) is \(\displaystyle \sqrt{\frac{G_0^{l}}{E_0^{l}}}\).

  6. (2a)

    Since \(\displaystyle \sqrt{\frac{G_0^{l}}{E_0^{l}}} <w_{l}\) and the objective function \(\displaystyle \frac{A_0}{B}+\sum _{i=1}^{n}{\phi }_i({\overline{k}}_i(B) B)\) is strictly convex, the optimal solution of (24) is \(w_{l}\).

  7. (2b)

    Since \(\displaystyle \sqrt{\frac{G_0^{l}}{E_0^{l}}}\in [w_{l}, w_{l-1}]\) and the objective function \(\displaystyle \frac{A_0}{B}+\sum _{i=1}^{n}{\phi }_i({\overline{k}}_i(B) B)\) is strictly convex, the optimal solution of (24) is \(\displaystyle \sqrt{\frac{G_{0}^{l}}{E_{0}^{l}}}\).

  8. (2c)

    Since \(\displaystyle \sqrt{\frac{G_{0}}{E_{0}}}> w_{l-1}\) and the objective function \(\displaystyle \frac{A_0}{B}+\sum _{i=1}^{n}{\phi }_i({\overline{k}}_i(B) B)\) is strictly convex, the optimal solution of (24) is \(w_{l-1}\).

  9. (3a)

    The objective function \(\displaystyle \frac{A_0}{B}+\sum _{i=1}^{n}{\phi }_i({\overline{k}}_i(B) B)\) is strictly convex, hence the derivative of the objective function at \(w_{l-1}\) is negative implies the optimal solution of (24) is \(w_{l-1}\).

  10. (3b)

    The objective function \(\displaystyle \frac{A_0}{B}+\sum _{i=1}^{n}{\phi }_i({\overline{k}}_i(B) B)\) is strictly convex, hence the derivative of the objective function at \(w_{l}\) is positive implies the optimal solution of (24) is \(w_{l}\).

  11. (3c)

    If the derivative of the objective function at \(w_{l}\) is negative and the derivative of the objective function at \(w_{l-1}\) is positive, then there exists exactly one of the following subintervals

    $$\begin{aligned} \displaystyle \left[ \frac{M_{\rho _{{\underline{j}}}}}{{\overline{k}}_{\rho _{{\underline{j}}}}^{l}}, w_{l-1}\right] , \left\{ \displaystyle \left[ \frac{M_{\rho _{{\underline{j}}+j-1}}}{{\overline{k}}_{\rho _{{\underline{j}}+j-1}}^{l}} , \frac{M_{\rho _{{\underline{j}}+j-2}}}{{\overline{k}}_{\rho _{{\underline{j}}+j-2}}^{l}} \right] \right\} _{j\in \{2,3,\ldots ,{\overline{j}}-{\underline{j}}+1\}}, \displaystyle \left[ w_{l}, \frac{M_{\rho _{{\overline{j}}}}}{{\overline{k}}_{\rho _{{\overline{j}}}}^{l}}\right] \end{aligned}$$

    such that the derivative has opposite sign at the endpoints of this subinterval. Hence the optimal solution of (24) must occur on the interval between these two consecutive points of the sequence (26). Then by Proposition 6, the coefficients of \(\displaystyle \frac{A_0}{B}+\sum _{i=1}^{n}{\phi }_i({\overline{k}}_i(B) B)\) on this subinterval can be determined, so the optimal solution of (24) also can be determined.

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, JY., Yao, MJ. The joint replenishment problem with trade credits. J Glob Optim 76, 347–382 (2020). https://doi.org/10.1007/s10898-019-00851-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-019-00851-5

Keywords

Navigation