Skip to main content

Advertisement

Log in

A power penalty approach to a mixed quasilinear elliptic complementarity problem

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, a power penalty approximation method is proposed for solving a mixed quasilinear elliptic complementarity problem. The mixed complementarity problem is first reformulated as a double obstacle quasilinear elliptic variational inequality problem. A nonlinear elliptic partial differential equation is then defined to approximate the resulting variational inequality by using a power penalty approach. The existence and uniqueness of the solution to the partial differential penalty equation are proved. It is shown that, under some mild assumptions, the sequence of solutions to the penalty equations converges to the unique solution of the variational inequality problem as the penalty parameter tends to infinity. The error estimates of the convergence of this penalty approach are also derived. At last, numerical experimental results are presented to show that the power penalty approximation method is efficient and robust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Angermann, L., Wang, S.: Convergence of a fitted finite volume method for the penalized Black-Scholes equation governing European and American Option pricing. Numer. Math. 106, 1–40 (2007)

    Article  MathSciNet  Google Scholar 

  2. Auslender, A.: Asymptotic analysis for penalty and barrier methods in variational inequalities. SIAM J. Control Optim. 37, 653–671 (1999)

    Article  MathSciNet  Google Scholar 

  3. Banz, L., Lamichhane, B.P., Stephan, E.P.: Higher order FEM for the obstacle problem of the p-Laplacian, A variational inequality approach. Comput. Math. Appl. 76, 1639–1660 (2018)

    Article  MathSciNet  Google Scholar 

  4. Bergounioux, M.: Use of augmented Lagrangian methods for the optimal control of obstacle problems. J. Optim. Theory Appl. 95, 101–126 (1997)

    Article  MathSciNet  Google Scholar 

  5. Cardaliaguet, P.: A double obstacle problem arising in differential game theory. J. Math. Anal. Appl. 360, 95–107 (2009)

    Article  MathSciNet  Google Scholar 

  6. Dai, M., Yi, F.: Finite-horizon optimal investment with transaction costs: a parabolic double obstacle problem. J. Differential Equations 246, 1445–1469 (2009)

    Article  MathSciNet  Google Scholar 

  7. Diaz, J.I.: Nonlinear Partial Differential Equations and Free Boundaries, Vol. I: Elliptic Equations, in: Research Notes in Math., 106, Pitman, London, (1985)

  8. Ding, R., Wang, Y., Shen, Q.: Convergence analysis and error estimates of the element-free Galerkin method for the second kind of elliptic variational inequalities. Comput. Math. Appl. 78, 2584–2592 (2019)

    Article  MathSciNet  Google Scholar 

  9. Forsyth, P.A., Vetzal, K.R.: Quadratic convergence for valuing American options using a penalty method. SIAM J. Sci. Comput. 23, 2095–2122 (2002)

    Article  MathSciNet  Google Scholar 

  10. Gabriel, S.A.: An NE/SQP method for the bounded nonlinear complementarity problem. J. Optim. Theory Appl. 97, 493–506 (1998)

    Article  MathSciNet  Google Scholar 

  11. Glowinski, R., Kuznetsov, Y.A., Pan, T.W.: A penalty/Newton/conjugate gradient method for the solution of obstacle problems. C. R. Math. Acad. Sci. Paris. 336, 435–440 (2003)

    Article  MathSciNet  Google Scholar 

  12. Huang, C.C., Wang, S.: A power penalty approach to a nonlinear complementarity problem. Oper. Res. Lett. 38, 72–76 (2010)

    Article  MathSciNet  Google Scholar 

  13. Huang, Y.S., Zhou, Y.Y.: Penalty approximation method for a class of elliptic variational inequality problems. Comput. Math. Appl. 53, 1665–1671 (2007)

    Article  MathSciNet  Google Scholar 

  14. Li, X.L., Dong, H.Y.: Analysis of the element-free Galerkin method for signorini problems. Appl. Math. Comput. 346, 41–56 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Li, X.L., Dong, H.Y.: An element-free Galerkin method for the obstacle problem. Appl. Math. Lett. 112, 1–7 (2021)

    MathSciNet  Google Scholar 

  16. Lindqvist, P.: On the equation \( \text{ div } (|\nabla u |^{ p - 2} \nabla u ) + \lambda | u |^{ p - 2} u = 0\). Proc. Amer. Math. Soc. 109, 157–164 (1990)

    MathSciNet  MATH  Google Scholar 

  17. Thong, D.V., Vinh, N.T., Cho, Y.J.: New strong convergence theorem of the inertial projection and contraction method for variational inequality problems. Numer. Algorithms 84, 285–305 (2020)

    Article  MathSciNet  Google Scholar 

  18. Troianiello, G.M.: Elliptic differential equations and obstacle problems. Plenum Press, New York (1987)

    Book  Google Scholar 

  19. Wang, S., Huang, C.S.: A power penalty method for solving a nonlinear parabolic complementarity problem. Nonlinear Anal. 69, 1125–1137 (2008)

    Article  MathSciNet  Google Scholar 

  20. Wang, S.: A penalty approach to a discretized double obstacle problem with derivative constraints. J. Global Optim. 62, 775–790 (2015)

    Article  MathSciNet  Google Scholar 

  21. Wang, S.: An interior penalty method for a large-scale finite-dimensional nonlinear double obstacle problem. Appl. Math. Model. 58, 217–228 (2018)

    Article  MathSciNet  Google Scholar 

  22. Yang, X.Q., Huang, X.X.: A nonlinear Lagrangian approach to constrained optimization problems. SIAM J. Optim. 11, 1119–1144 (2001)

    Article  MathSciNet  Google Scholar 

  23. Zhang, K., Teo, K.L.: Convergence analysis of power penalty method for American bond option pricing. J. Global Optim. 56, 1313–1323 (2013)

    Article  MathSciNet  Google Scholar 

  24. Zhao, J.X., Wang, S.: A power penalty approach to a discretized obstacle problem with nonlinear constraints. Optim. Lett. 13, 1483–1504 (2019)

    Article  MathSciNet  Google Scholar 

  25. Zhou, Y.Y., Wang, S., Yang, X.Q.: A penalty approximation method for a semilinear parabolic double obstacle problem. J. Global Optim. 60, 531–550 (2014)

    Article  MathSciNet  Google Scholar 

  26. Zeidler, E.: Nonlinear functional analysis and its applications II/B: nonlinear monotone operators. Springer, New York (1985)

    Book  Google Scholar 

  27. Zvan, R., Forsyth, P.A., Vetzal, K.R.: Penalty methods for American options with stochastic volatility. J. Comput. Appl. Math. 91, 199–218 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to the referees for the valuable suggestions and comments for the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuying Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by grants from the National Natural Sciences Foundation of China (11771319) and (11971339).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Y., Wang, S. & Zhou, Y. A power penalty approach to a mixed quasilinear elliptic complementarity problem. J Glob Optim 81, 901–918 (2021). https://doi.org/10.1007/s10898-021-01000-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-021-01000-7

Keywords

Navigation