Skip to main content
Log in

New LP-based local and global algorithms for continuous and mixed-integer nonconvex quadratic programming

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this work, we propose a new approach called “Successive Linear Programming Algorithm (SLPA)” for finding an approximate global minimizer of general nonconvex quadratic programs. This algorithm can be initialized by any extreme point of the convex polyhedron of the feasible domain. Furthermore, we generalize the simplex algorithm for finding a local minimizer of concave quadratic programs written in standard form. We prove a new necessary and sufficient condition for local optimality, then we describe the Revised Primal Simplex Algorithm (RPSA). Finally, we propose a hybrid local-global algorithm called “SLPLEX”, which combines RPSA with SLPA for solving general concave quadratic programs. In order to compare the proposed algorithms to the branch-and-bound algorithm of CPLEX12.8 and the branch-and-cut algorithm of Quadproga, we develop an implementation with MATLAB and we present numerical experiments on 139 nonconvex quadratic test problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Notes

  1. The quality of a solution can be measured using the gap between the value of the objective function at this solution and the known global optimum.

References

  1. Absil, P.-A., Tits, A.L.: Newton-KKT interior-point methods for indefinite quadratic programming. Comput. Optim. Appl. 36, 5–41 (2007)

    Article  MathSciNet  Google Scholar 

  2. Bentobache, M., Bibi, M.O.: Numerical methods of linear and quadratic programming: theory and algorithms. French Academic Editions, Germany (2016) (in French)

  3. Bentobache, M., Telli, M., Mokhtari A.: A simplex algorithm with the smallest index rule for concave quadratic programming. In: proceedings of the Eighth International Conference on Advanced Communications and Computation, INFOCOMP 2018, Barcelona, Spain, July 22–26, pp. 88–93 (2018)

  4. Bentobache, M., Telli, M., Mokhtari, A.: A sequential linear programming algorithm for continuous and mixed-integer nonconvex quadratic programming. In: Le Thi, H.A., et al. (eds.) Optimizatin of Complex Systems: Theory, Models, Algorithms and Applications 991, 26–36. Springer, Cham (2020)

  5. Bertsekas, D.P.: Nonlinear Programming. Second Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

  6. Chikhaoui, A., Djebbar, B., Belabbaci, A., Mokhtari, A.: Optimization of a quadratic function under its canonical form. Asian J. Appl. Sci. 2(26), 499–510 (2009)

    Article  Google Scholar 

  7. Chinchuluun, A., Pardalos, P.M., Enkhbat, R.: Global minimization algorithms for concave quadratic programming problems. Optimization 54(6), 627–639 (2005)

    Article  MathSciNet  Google Scholar 

  8. CPLEX12.8. Ilog. Inc., Armonk, NY (2017)

  9. Dantzig, G.B.: Linear programming and extensions. Princeton University Press, Princeton (1963)

  10. Enkhbat, R.: An algorithm for maximizing a convex function over a simple set. J. Glob. Optim. 8, 379–391 (1996)

    Article  MathSciNet  Google Scholar 

  11. Enkhbat, R.: On some theory, methods and algorithms for concave programming. In: Series on Computers and Operations Research, Optimization and Optimal Control 1, 79–102 (2003)

  12. Enkhbat, R., Bazarsad, Y.: General quadratic programming and its applications in response surface analysis. In: Chinchuluun, A., et al. (eds.) Optimization and Optimal Control, Springer Optimization and Its Applications 39, 121–137. Springer, Cham (2010)

  13. Floudas, C.A., Pardalos, P.M., Adjiman, C., Esposito, W.R., Gümüs, Z.H., Harding, S.T., Klepeis, J.L., Meyer, C.A., Schweiger, C.A.: Handbook of Test Problems in Local and Global Optimization (Nonconvex Optimization and Its Applications). Springer, Cham (1999)

    MATH  Google Scholar 

  14. Frank, M., Wolfe, P.: An algorithm for quadratic programming. Naval Res. Logist. Q. 3, 95–110 (1956)

    Article  MathSciNet  Google Scholar 

  15. Globallib : Gamsworld global optimization library. http://www.gamsworld.org/global/globallib.htm

  16. Gould, N.I.M., Orban, D., Toint, P.L.: CUTEr, a constrained and unconstrained testing environment, revisited. ACM Trans. Math. Soft. 29, 373–394 (2003)

    Article  Google Scholar 

  17. Horst, R.: An algorithm for nonconvex programming problems. Math. Program. 10(1), 312–321 (1976)

    Article  MathSciNet  Google Scholar 

  18. Hiriart-Urruty, J.B., Ledyaev, Y.S.: A note on the characterization of the global maxima of a (tangentially) convex function over a convex set. J. Convex Anal. 3, 55–62 (1996)

    MathSciNet  MATH  Google Scholar 

  19. Ikheneche, N.: Support method for the minimization of a convex quadratic function, Master thesis, University of Bejaia (2004) (in French)

  20. Le Thi, H.A., Pham Dinh, T.: Solving a class of linearly constrained indefinite quadratic problems by DC algorithms. J. Glob. Optim. 11(3), 253–285 (1997)

    Article  Google Scholar 

  21. Le Thi, H.A., Pham Dinh, T., Muu, L.D.: A combined D.C. optimization-ellipsoidal branch-and-bound algorithm for solving nonconvex quadratic programming problems. J. Comb. Optim. 2(1), 9–28 (1998)

  22. Le Thi, H.A., Pham Dinh, T.: A branch-and-bound method via D.C. optimization algorithm and ellipsoidal technique for box constrained nonconvex quadratic problems. J. Glob. Optim. 13, 171–206 (1998)

  23. Le Thi, H.A., Pham Dinh, T.: A continuous approach for globally solving linearly constrained quadratic zero-one programming problems. Optimization 50(1–2), 93–120 (2001)

    Article  MathSciNet  Google Scholar 

  24. Le Thi, H.A., Pham Dinh, T.: Dc programming and dca: thirty years of developments. Math. Program. 169(1), 5–68 (2018)

    Article  MathSciNet  Google Scholar 

  25. Niu, Y.S.: Programmation dc et dca en optimisation combinatoire et optimisation polynomiale via les techniques de sdp: codes et simulations numériques. Ph.D. thesis, INSA-Rouen (2010)

  26. Pardalos, P.M., Rodgers, G.: Computational aspects of a branch and bound algorithm for quadratic zero-one programming. Computing 45(2), 131–144 (1990)

    Article  MathSciNet  Google Scholar 

  27. Pham Dinh, T., Le Thi, H.A., Akoa, F.: Combining DCA (DC Algorithms) and interior point techniques for large-scale nonconvex quadratic programming. Optim. Methods Softw. 23(4), 609–629 (2008)

    Article  MathSciNet  Google Scholar 

  28. Pham Dinh, T., Nguyen Canh, N., Le Thi, H.A.: An efficient combined DCA and B&B using DCSDP relaxation for globally solving binary quadratic programs. J. Glob. Optim. 48(4), 595–632 (2010)

    Article  Google Scholar 

  29. Pham Dinh, T., Le Thi, H.A., Pham, V.N., Niu, Y.S.: DC programming approaches for discrete portfolio optimization under concave transaction costs. Optim. Lett. 10(2), 1–22 (2016)

    Article  MathSciNet  Google Scholar 

  30. Ploskas, N., Samaras, N.: Linear programming using MATLAB, Springer Optimization and Its Applications 127. Springer, Cham (2017)

  31. Rusakov, A.I.: Concave programming under simplest linear constraints. Comput. Math. Math. Phys. 43(7), 908–917 (2003)

    MathSciNet  MATH  Google Scholar 

  32. Sahni, S.: Computationally related problems. SIAM J. Comput. 3, 262–279 (1974)

    Article  MathSciNet  Google Scholar 

  33. Strekalovsky, A.S.: On global maximum search of convex function over a feasible set. J. Numer. Math. Math. Phys. 3, 349–363 (1993). (in Russian)

  34. Strekalovsky, A.S.: Global optimality conditions for nonconvex optimization. J. Glob. Optim. 12(4), 415–434 (1998)

    Article  MathSciNet  Google Scholar 

  35. Strekalovsky, A.S., Kuznetsova, A.A., Yakovleva, T.V.: Global optimality conditions for nonconvex optimization. On nonconvex quadratic optimization. Sib. Zh. Vychisl. Mat. 4(2), 185–199 (2001) (in Russian)

  36. Sung, Y.Y., Rosen, J.B.: Global minimum test problem construction. Math. Program. 24(1), 353–355 (1982)

    Article  MathSciNet  Google Scholar 

  37. Telli, M., Bentobache, M., Mokhtari, A.: A successive linear approximation algorithm for the global minimization of a concave quadratic program. Comput. Appl. Math. 39(4), 272 (2020). https://doi.org/10.1007/s40314-020-01317-1

    Article  MathSciNet  MATH  Google Scholar 

  38. Tuy, H.: Concave programming under linear constraints. Soviet Math. 5, 1437–1440 (1964)

    MATH  Google Scholar 

  39. Tuy, H.: Convex analysis and global optimization: Springer Optimization and Its Applications. 110, 2nd edn. Springer, Cham (2016)

  40. Wang, F.: A new exact algorithm for concave knapsack problems with integer variables. Int. J. Comput. Math. 96(1), 126–134 (2019)

    Article  MathSciNet  Google Scholar 

  41. Wolfe, P.: The simplex method for quadratic programming. Econometrica 27, 382–398 (1959)

    Article  MathSciNet  Google Scholar 

  42. Xia, W., Vera, J.C., Zuluaga, L.F.: Globally solving nonconvex quadratic programs via linear integer programming techniques. INFORMS J. Comput. 32(1), 1–17 (2019)

    MathSciNet  MATH  Google Scholar 

  43. Zamani, M.: A new algorithm for concave quadratic programming. J. Glob. Optim. 75, 655–681 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the anonymous referees whose comments and suggestions have considerably improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohand Bentobache.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bentobache, M., Telli, M. & Mokhtari, A. New LP-based local and global algorithms for continuous and mixed-integer nonconvex quadratic programming. J Glob Optim 82, 659–689 (2022). https://doi.org/10.1007/s10898-021-01108-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-021-01108-w

Keywords

Mathematics Subject Classification

Navigation