Skip to main content
Log in

Uzawa Conjugate Gradient Domain Decomposition Methods for Coupled Stokes Flows

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper deals with nonoverlapping domain decomposition methods for two coupled Stokes flows, based on the duality theory. By introducing a fictitious variable in the transmission condition and using saddle-point equations, the problem is restated as a linearly constrained maximization problem. According to whether constraints are uncoupled Stokes problems or uncoupled Poisson problems, two Uzawa-type domain decomposition algorithms are proposed. The results of some numerical experiments on a model problem are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernardi C., Chacon, T., Lewandowski R., and Murat F. (2002). A model for two coupled turbulent fluids I: Analysis of the system. Nonlinear Partial Differential Equations and Their Applications. Collège de France Seminar, Vol. XIV (Paris, 1997/1998), Stud. Math. Appl. 31, North-Holland, Amsterdam. pp. 69–102.

  2. C. Bernardi T. Chacon R. Lewandowski F. Murat (2003) ArticleTitleA model for two coupled turbulent fluids II: Numerical analyslis of a spectral discretization SIAM J. Numer. Anal. 40 2368–2394 Occurrence Handle10.1137/S0036142901385829

    Article  Google Scholar 

  3. C. Bernardi T. Chacón-Rebello Gomez-Mármol R. Lewandowski F. Murat (2004) ArticleTitleA model for two coupled turbulent fluids III: Numerical approximation by Finite elements Numer. Math. 98 33–66 Occurrence Handle10.1007/s00211-003-0490-9 Occurrence Handle2005g:76074

    Article  MathSciNet  Google Scholar 

  4. D. A. Bresch (2004) ArticleTitleA direct asymptotic analysis on a nonlinear model with thin layers Ann. Univ. Ferrara 7 359–373

    Google Scholar 

  5. D. Bresch J. Koko (2004) ArticleTitleAn optimization-based domain decomposition method for nonlinear wall laws in coupled systems Math. Models Methods Appl. Sci. 14 1085–1101 Occurrence Handle10.1142/S0218202504003556 Occurrence Handle2005i:65206

    Article  MathSciNet  Google Scholar 

  6. J. A. T. Bye J.-O. Wolff (2001) ArticleTitleQuasi-geostrophic modelling of the coupled ocean atmosphere Math. Comput. Modelling 33 609–617 Occurrence Handle10.1016/S0895-7177(00)00265-X

    Article  Google Scholar 

  7. P.-G. Ciarlet (1979) The finite element method for elliptic problems North-Holland Amsterdam

    Google Scholar 

  8. J. Daniel (1970) The approximate minimization of functionals Prentice–Hall Englewood Cliffs, NJ

    Google Scholar 

  9. Q. Du (2001) ArticleTitleOptimization based non-overlapping domain decomposition algorithms and their convergence SIAM J. Numer. Anal. 39 1056–1077 Occurrence Handle1004.65132 Occurrence Handle2003b:65117

    MATH  MathSciNet  Google Scholar 

  10. Q. Du M.D. Gunzburger (2000) ArticleTitleA gradient method approach to optimization-based multidisciplinary simulations and nonverlapping domain decomposition algorithms SIAM J. Numer. Anal. 37 1513–1541 Occurrence Handle2001d:65162

    MathSciNet  Google Scholar 

  11. I. Ekeland R. Temam (1999) Convex Analysis and Variational Problems SIAM Philadelphia

    Google Scholar 

  12. R. Glowinski (2003) Numerical methods for fluids P. G. Ciarlet J. L. Lions (Eds) Handbook of Numerical Analysis North-Holland Amsterdam

    Google Scholar 

  13. R. Glowinski P. Le Tallec (1989) Augmented Lagrangian and Operator-splitting Methods in Nonlinear Mechanics SIAM Philadelphia

    Google Scholar 

  14. R. Glowinski A. Marocco (1975) ArticleTitleSur l’approximation par éléments finis d’ordre un, et la résolution par pénalisation–dualité, d’une classe de problèmes de Dirichlet nonlinéaires RAIRO Anal. Num. 2 41–76

    Google Scholar 

  15. M. D. Gunzburger H. K. Lee (2000) ArticleTitleAn optimization–based domain decomposition method for Navier–Stokes equations SIAM J. Numer. Anal. 37 1455–1480 Occurrence Handle2001d:65163

    MathSciNet  Google Scholar 

  16. M.D. Gunzburger J. Peterson (1999) ArticleTitleAn optimization based domain decomposition method for partial differential equations Comp. Math. Appl. 37 77–93 Occurrence Handle10.1016/S0898-1221(99)00127-3 Occurrence Handle2000a:65159

    Article  MathSciNet  Google Scholar 

  17. J. Koko (2002) ArticleTitleAn optimization based domain decomposition method for a bonded structure Math. Models Meth. Appl. Sci. 12 857–870 Occurrence Handle10.1142/S0218202502001933 Occurrence Handle01882900 Occurrence Handle2003d:74009

    Article  MATH  MathSciNet  Google Scholar 

  18. Lewandowski, R. (1997). Analyse Mathématique et Océanographie, Collection “Recherche en Mathématiques Appliquées”, Masson.

  19. J.-L. Lions R. Temam S. Wang (1993) ArticleTitleModels for the coupled atmosphere and ocean. (CAO I,II) Comput. Mech. Adv. 1 1–120 Occurrence Handle94m:35247

    MathSciNet  Google Scholar 

  20. D. Luenberger (1989) Linear and Nonlinear Programming Addison Wesley Reading, MA

    Google Scholar 

  21. E. Miglio A. Quarteroni F. Saleri (2003) ArticleTitleCoupling of free-surface and groundwater flows Comput. Fluids 22 73–83

    Google Scholar 

  22. E. Polak (1971) Computational Methods in Optimisation Academic Press New York

    Google Scholar 

  23. P. M. Suquet (1988) Discontinuities and plasticity J. J. Moreau P. D. Panagiotopoulos (Eds) Nonsmooth Mechanics and Applications Springer New-York 279–340

    Google Scholar 

  24. A. Quarteroni A. Valli (1999) Domain Decomposition Methods for Partial Differential Equations Oxford University Press Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Koko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koko, J. Uzawa Conjugate Gradient Domain Decomposition Methods for Coupled Stokes Flows. J Sci Comput 26, 195–216 (2006). https://doi.org/10.1007/s10915-005-4933-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-005-4933-6

Keywords

Navigation