Skip to main content
Log in

Anti-Dissipative Schemes for Advection and Application to Hamilton–Jacobi–Bellmann Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose two new antidiffusive schemes for advection (or linear transport), one of them being a mixture of Roe’s Super-Bee scheme and of the “Ultra-Bee” scheme. We show how to apply these schemes to treat time-dependent first order Hamilton–Jacobi–Bellman equations with discontinuous initial data, possibly infinitely-valued. Numerical tests are proposed, in one and two space dimensions, in order to validate the methods

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bardi M., and Capuzzo-Dolcetta I. (1997). Optimal control and viscosity solutions of Hamilton–Jacobi–Bellman equations. Systems and Control: Foundations and Applications. Birkhäuser, Boston

    Google Scholar 

  2. Barles G. (1994). Solutions de viscosité des équations de Hamilton–Jacobi. Mathématiques Applications (Berlin). Vol. 17, Springer-Verlag, Paris

    Google Scholar 

  3. Bellman, R. (1957). Dynamic Programming, Princeton Univeristy Press

  4. Bokanowski, O., Megdich, N., and Zidani, H. On the convergence of a non monotone scheme for HJB equations, (in preparation)

  5. Bouchut F. (2004). An antidiffusive entropy scheme for monotone scalar conservation laws. J. Sci. Comput. 21(1):1–30

    Article  MathSciNet  Google Scholar 

  6. Després B., and Lagoutière F. (1999). A non-linear anti-diffusive scheme for the linear advection equation. C. R. Acad. Sci. Paris, Série I, Analyse Numérique 328:939–944

    Google Scholar 

  7. Després B., and Lagoutière F. (2001). Contact discontinuity capturing schemes for linear advection and compressible gas dynamics. J. Sci. Comput. 16:479–524

    Article  MathSciNet  Google Scholar 

  8. Falcone M., and Ferretti R. (1998). Convergence analysis for a class of high-order semi-Lagrangian advection schemes. SIAM J. Numer. Anal. 35(3):909–940 (electronic)

    Article  MathSciNet  Google Scholar 

  9. Falcone M., and Ferretti R. (2002). Semi-Lagrangian schemes for Hamilton–Jacobi equations, discrete representation formulae and Godunov methods. J. Comput. Phys. 175:559–575

    Article  MathSciNet  Google Scholar 

  10. Giorgi T., Falcone M., and Loreti P. (1994). Level sets of viscosity solutions: Some applications to fronts and rendez-vous problems. SIAM J. Appl. Math. 54(5):1335–1354

    Article  MathSciNet  Google Scholar 

  11. Godlewski E., and Raviart P-A. (1991). Hyperbolic Systems of Conservation Laws. SMAI. Ellipses

  12. Harten E. (1983). High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49:357–393

    Article  MathSciNet  Google Scholar 

  13. Harten E. (1989). Eno schemes with subcell resolution. J. Comput. Phys. 83:148–184

    Article  MathSciNet  Google Scholar 

  14. Hu C., and Shu C.-W. (1999). A discontinuous Galerkin finite element method for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21(2):666–690 (electronic)

    Article  MathSciNet  Google Scholar 

  15. Jiang G.-S., and Peng D. (2000). Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21(6): 2126–2143 (electronic)

    Article  MathSciNet  Google Scholar 

  16. Lagoutière F. (1999). Numerical resolution of scalar convex equations: explicit stability, entropy and convergence conditions. In CEMRACS 1999 (Orsay), Vol.~10 ESAIM Proc., SMAI Paris pp. 183–199 (electronic)

  17. Lagoutière, F. (2000). PhD thesis, University of Paris VI, Paris

  18. Lagoutière F. (2000). A non-dissipative entropic scheme for convex scalar equations via discontinuous cell-reconstruction. C.R. Acad. Sci. Paris, Ser. I 338:549–554

    Google Scholar 

  19. Osher S., and Shu C.-W. (1991). High essentially nonoscillatory schemes for Hamilton–Jacobi equations. SIAM J. Numer. Anal. 28(4):907–922

    Article  MathSciNet  Google Scholar 

  20. Roe P.L. (1985). Some contributions to the modelling of discontinuous flows. Lectures Appl. Math. 22:163–193

    MathSciNet  Google Scholar 

  21. Sethian J.A. (1999). Level set methods and fast marching methods. Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, second edition

  22. Sweby P.K. (1984). High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21(5):995–1011

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Bokanowski.

Additional information

AMS subject classifications. Primary 65M12, Secondary 58J47

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bokanowski, O., Zidani, H. Anti-Dissipative Schemes for Advection and Application to Hamilton–Jacobi–Bellmann Equations. J Sci Comput 30, 1–33 (2007). https://doi.org/10.1007/s10915-005-9017-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-005-9017-0

Keywords

Navigation