Skip to main content
Log in

Overlapping Schwarz and Spectral Element Methods for Linear Elasticity and Elastic Waves

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The classical overlapping Schwarz algorithm is here extended to the spectral element discretization of linear elastic problems, for both homogeneous and heterogeneous compressible materials. The algorithm solves iteratively the resulting preconditioned system of linear equations by the conjugate gradient or GMRES methods. The overlapping Schwarz preconditioned technique is then applied to the numerical approximation of elastic waves with spectral elements methods in space and implicit Newmark time advancing schemes. The results of several numerical experiments, for both elastostatic and elastodynamic problems, show that the convergence rate of the proposed preconditioning algorithm is independent of the number of spectral elements (scalability), is independent of the spectral degree in case of generous overlap, otherwise it depends inversely on the overlap size. Some results on the convergence properties of the spectral element approximation combined with Newmark schemes for elastic waves are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernardi, C., and Maday, Y. (1997). Spectral methods. In Handbook of Numerical Analysis, Vol. V: Techniques of Scientific Computing (Part 2), North-Holland, Amsterdam, pp. 209–485.

  2. Brezzi F., Fortin M. (1991). Mixed and Hybrid Finite Element Methods. Springer-Verlag, Berlin

    Google Scholar 

  3. Casadei F., Gabellini E., Fotia G., Maggio F., Quarteroni A. (2002). A mortar spectral/finite element method for complex 2d and 3d elastodynamic problems. Comput. Methods Appl. Mech. Eng. 191(45): 5119–5148

    Article  MathSciNet  Google Scholar 

  4. Casarin M.A. (1997). Quasi-optimal Schwarz methods for the conforming spectral element discretization. SIAM J. Numer. Anal. 34(6): 2482–2502

    Article  MATH  MathSciNet  Google Scholar 

  5. Chaljub E., Capdeville Y., Vilotte J.-P. (2003). Solving elastodynamics in a fluid-solid heterogeneous sphere: a parallel spectral element approximation on nonconforming grids. J. Comput. Phys. 187: 457–491

    Article  ADS  MathSciNet  Google Scholar 

  6. Ciarlet P.G. (1998). Mathematical Elasticity, North-Holland, Amsterdam.

  7. Deville M.O., Fischer P.F., Mund E.H. (2002). High-Order Methods for Incompressible Fluid Flow. Cambridge University Press, New York

    Google Scholar 

  8. Dryja M., Widlund O.B. (1994). Domain decomposition algorithms with small overlap. SIAM J. Sci.Comput. 15(3): 604–620

    Article  MathSciNet  Google Scholar 

  9. Faccioli E., Maggio F., Quarteroni A., Tagliani A. (1996). Spectral-domain decomposition for the solution of acoustic and elastic wave equations. Geophysics 61: 1160–1174

    Article  Google Scholar 

  10. Fischer P.F., Miller N.I., Tufo H.M. (2000). An overlapping Schwarz method for spectral element simulation of three-dimensional incompressible flows. In: Bjørstad P., Luskin M. (eds). Parallel Solution of PDE, number 120 in IMA Volumes Mathematical Applications. Springer-Verlag, Berlin, pp. 1–30

    Google Scholar 

  11. Goldfeld P., Pavarino L.F., Widlund O.B. (2003). Balancing Neumann–Neumann preconditioners for mixed approximations of heterogeneous problems in linear elasticity. Numer. Math. 95(2): 283–324

    Article  MathSciNet  Google Scholar 

  12. Gottlieb D., Hesthaven J.S. (2001). Spectral methods for hyperbolic problems. J. Comput. Appl. Math. 128(1–2): 83–131

    Article  MathSciNet  Google Scholar 

  13. Karniadakis G.E., Sherwin S.J. (1998). Spectral/hp Element Methods for CFD. Oxford University Press, London

    Google Scholar 

  14. Komatitsch D., Ritsema J., Tromp J. (2002). The spectral-element method, Beowulf computing, and global seismology. Science 298(5599): 1737–1742

    Article  PubMed  ADS  CAS  Google Scholar 

  15. Maggio F., Quarteroni A. (1994). Acoustic wave propagation by spectral methods. East–West J. Numer. Math. 2: 129–150

    MathSciNet  Google Scholar 

  16. Newmark N.M. (1959). A method of computation for structural dynamics. Proc. ASCE J. Eng. Mech. (EM3). 85: 67–94

    Google Scholar 

  17. Pavarino L.F. (1994). Additive Schwarz methods for the p-version finite element method. Numer. Math. 66(4): 493–515

    Article  MATH  MathSciNet  Google Scholar 

  18. Pavarino L.F. (2002). Overlappping Schwarz preconditioners for spectral element discretizations of convection-diffusion problems. Int. J. Numer. Meth. Eng. 53: 1005–1023

    Article  MathSciNet  Google Scholar 

  19. Pavarino L.F., Warburton T. (2000). Overlapping schwarz methods for unstructured spectral elements. J. Comput. Phys. 160(1): 298–317

    Article  MathSciNet  ADS  Google Scholar 

  20. Pavarino L.F., Widlund O.B. (2000). Iterative substructuring methods for spectral element discretizations of elliptic systems. II: mixed methods for linear elasticity and Stokes flow. SIAM J. Numer. Anal. 37(2): 375–402

    Article  MathSciNet  Google Scholar 

  21. Quarteroni A., Tagliani A., Zampieri E. (1998). Generalized Galerkin approximations of elastic waves with absorbing boundary conditions. Comput. Methods Appl. Mech. Eng. 163: 323–341

    Article  MathSciNet  Google Scholar 

  22. Quarteroni A., Valli A. (1999). Domain Decomposition Methods for Partial Differential Equations. Oxford Science Publications, London

    Google Scholar 

  23. Schwab C. (1998). p- and hp-finite element methods. Theory and applications in solid and fluid mechanics. Oxford University Press, New York

    Google Scholar 

  24. Smith B.F., Bjørstad P., Gropp W.D. (1996). Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge

    Google Scholar 

  25. Szabó B., Babuška I. (1991). Finite Element Analysis. Wiley, New York

    Google Scholar 

  26. Toselli A., Widlund O.B. (2004). Domain Decomposition Methods: Algorithms and Theory. Computational Mathematics, vol. 34, Springer-Verlag, Berlin

    Google Scholar 

  27. Wood W.L. (1984). A further look at Newmark, Houbolt, etc., time-stepping formulae. Int. J. Numer. Meth. Eng. 20: 1009–1017

    Article  MATH  Google Scholar 

  28. Wood W.L. (1990). Practical time-stepping schemes. Clarendon Press, Oxford

    Google Scholar 

  29. Zampieri E., Pavarino L.F. (2006). Approximation of acoustic waves by explicit Newmark’s schemes and spectral element methods. J. Comput. Appl. Math. 185(2): 308–325

    Article  MathSciNet  Google Scholar 

  30. Zampieri, E., and Pavarino, L.F. (2006). An explicit second order spectral element method for acoustic waves: theory and applications. Adv. Comp. Math. To appear.

  31. Zampieri E., Tagliani A. (1997). Numerical approximation of elastic waves equations by implicit spectral methods. Comput. Methods Appl. Mech. Eng. 144: 33–50

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca F. Pavarino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavarino, L.F., Zampieri, E. Overlapping Schwarz and Spectral Element Methods for Linear Elasticity and Elastic Waves. J Sci Comput 27, 51–73 (2006). https://doi.org/10.1007/s10915-005-9047-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-005-9047-7

Keywords

AMS(MOS) Subject Classifications

Navigation