Skip to main content
Log in

Practical Implementation of Krylov Subspace Spectral Methods

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Krylov subspace spectral methods have been shown to be high-order accurate in time and more stable than explicit time-stepping methods, but also more difficult to implement efficiently. This paper describes how these methods can be fashioned into practical solvers by exploiting the simple structure of differential operators Numerical results concerning accuracy and efficiency are presented for parabolic problems in one and two space dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alpert, B., Beylkin, G., Gines, D., Vozovoi, L.: Adaptive solution of partial differential equations in multiwavelet bases. J. Comput. Phys. 182, 149–190 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Atkinson, K.: An Introduction to Numerical Analysis, 2nd edn. Wiley, New York (1989)

    MATH  Google Scholar 

  3. Beylkin, G., Keiser, J.M., Vozovoi, L.: A new class of time discretization schemes for the solution of nonlinear PDEs. J. Comput. Phys. 147, 362–387 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Calvetti, D., Golub, G.H., Gragg, W.B., Reichel, L.: Computation of Gauss-Kronrod quadrature rules. Math. Comput. 69, 1035–1052 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dahlquist, G., Eisenstat, S.C., Golub, G.H.: Bounds for the error of linear systems of equations using the theory of moments. J. Math. Anal. Appl. 37, 151–166 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gautschi, W.: Orthogonal polynomials: applications and computation. Acta Numerica 5, 45–120 (1996)

    Article  MathSciNet  Google Scholar 

  7. Gelb, A., Tanner, J.: Robust reprojection methods for the resolution of the Gibbs phenomenon. Appl. Comput. Harmon. Anal. 20, 3–25 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Golub, G.H.: Some modified matrix eigenvalue problems. SIAM Rev. 15, 318–334 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  9. Golub, G.H.: Bounds for matrix moments. Rocky Mt. J. Math. 4, 207–211 (1974)

    Article  MathSciNet  Google Scholar 

  10. Golub, G.H., Gutknecht, M.H.: Modified moments for indefinite weight functions. Numer. Math. 57, 607–624 (1989)

    Article  MathSciNet  Google Scholar 

  11. Golub, G.H., Meurant, C.: Matrices, moments and quadrature. In: Griffiths, D.F., Watson, G.A. (eds.) Proceedings of the 15th Dundee Conference, June–July 1993. Longman Scientific & Technical (1994)

  12. Guidotti, P., Lambers, J.V., Sølna, K.: Analysis of wave propagation in 1D inhomogeneous media. Numer. Funct. Anal. Optim. 27, 25–55 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hochbruck, M., Lubich, C.: On Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 34, 1911–1925 (1996)

    Article  MathSciNet  Google Scholar 

  14. Kress, W., Gustafsson, B.: Deferred correction methods for initial boundary value problems. J. Sci. Comput. 17, 241–251 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lambers, J.V.: Krylov subspace methods for variable-coefficient initial-boundary value problems. Ph.D. Thesis, Stanford University, SCCM Program (2003)

  16. Lambers, J.V.: Krylov subspace spectral methods for variable-coefficient initial-boundary value problems. Electron. Trans. Numer. Anal. 20, 212–234 (2005)

    MATH  MathSciNet  Google Scholar 

  17. Lambers, J.V.: Approximating eigenfunctions of variable-coefficient differential operators (in preparation)

  18. Levy, D., Puppo, G., Russo, G.: Central WENO schemes for hyperbolic systems of conservation laws. M2AN 33(3), 547–571 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Sack, R.A., Donovan, A.F.: An algorithm for Gaussian quadrature given modified moments. Numer. Math. 18, 465–478 (1971)

    Article  MathSciNet  Google Scholar 

  20. Shampine, L.F., Reichelt, M.W.: The Matlab ODE suite. SIAM J. Sci. Comput. 18, 1–22 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James V. Lambers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lambers, J.V. Practical Implementation of Krylov Subspace Spectral Methods. J Sci Comput 32, 449–476 (2007). https://doi.org/10.1007/s10915-007-9140-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-007-9140-1

Keywords

Navigation