Skip to main content
Log in

Essentially Non-Oscillatory Adaptive Tree Methods

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We develop high order essentially non-oscillatory (ENO) schemes on non-uniform meshes based on generalized binary trees. The idea is to adopt an appropriate data structure which allows to communicate information easily between unstructured data structure and virtual uniform meshes. While the generalized binary trees as an unstructured data structure can store solution information efficiently if combined with a good adaptive strategy, virtual uniform meshes allow us to take advantage of many well-developed ENO numerical methods based on uniform meshes. Therefore, the ENO adaptive tree methods proposed here can leverage the merits from both tree structures and uniform meshes. Numerical examples demonstrate that the new method is efficient and accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abgrall, R.: On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation. J. Comput. Phys. 114, 45–58 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Albert, S., Cockburn, B., French, D., Peterson, T.: A posteriori error estimates for general numerical methods for Hamilton–Jacobi equations. Part I: The steady state case. Math. Comput. 71, 49–76 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Berger, M., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484–512 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berger, M.J., LeVeque, R.J.: Adaptive mesh refinement using wave propagation algorithms for hyperbolic systems. SIAM J. Numer. Anal. 35, 2298–2316 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Casper, J., Atkins, H.L.: A finite-volume high-order ENO scheme for two-dimensional hyperbolic systems. J. Comput. Phys. 106, 62–76 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cecil, T., Osher, S., Qian, J.: Simplex free adaptive tree fast sweeping and evolution methods for solving level set equations in arbitrary dimension. J. Comput. Phys. 213(2), 458–473 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cockburn, B., Yenikaya, B.: An adaptive method with rigorous error control for the Hamilton–Jacobi equations. Part I: The one dimensional steady state case. Appl. Numer. Math. 52, 175–195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Frisken, S.F., Perry R.N.: Simple and efficient traversal methods for quadtrees and octrees. J. Graphics Tools 7(3), 1–11 (2002)

    MATH  Google Scholar 

  9. Glimm, J., Grove, J., Li, X., Oh, W., Tan, D.C.: The dynamics of bubble growth for Rayleigh–Taylor unstable interfaces. Phys. Fluids 31, 174–201 (1988)

    Article  Google Scholar 

  10. Gosse, L., Makridakis, C.: Two a posteriori error estimates for one-dimensional scalar conservation laws. SIAM J. Numer. Anal. 38, 964–988 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Harten, A., Engquist, B., Osher, S.J., Chakravarthy, S.: Uniformly high order essentially non-oscillatory schemes, III. J. Comput. Phys. 71, 231–303 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jiang, G.S., Peng, D.: Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21, 2126–2143 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Knuth, D.E.: The Art of Computer Programming, vol. 1: Fundamental algorithms, 3rd edn. Addison–Wesley, Redwood City (1997)

    MATH  Google Scholar 

  15. Kroner, D., Ohlberger, M.: A posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multidimensions. Math. Comp. 69, 25–39 (2000)

    Article  MathSciNet  Google Scholar 

  16. LeVeque, R.J.: Numerical methods for conservation laws. Birkhauser, Basel (1990)

    MATH  Google Scholar 

  17. Merriman, B.: Understanding the Shu–Osher conservative finite difference form. J. Sci. Comput. 19, 309–322 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Min, C: Local level set method in high dimension and codimension. J. Comput. Phys. 200(1), 368–382 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Moore, D.: The cost of balancing generalized quadtrees. In: SMA ’95: Proceedings of the Third ACM Symposium on Solid Modeling and Applications, pp. 305–312. ACM, New York (1995)

    Chapter  Google Scholar 

  20. Osher, S.J., Shu, C.W.: High-order essentially nonoscillatory schemes for Hamilton–Jacobi equations. SIAM J. Numer. Anal. 28, 907–922 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Osher, S., Fedkiw, R.P.: Level Set Methods and Dynamic Implicit Surfaces. Oxford University Press, London (2002)

    Google Scholar 

  22. Qian, J., Symes, W.W.: Adaptive finite difference method for traveltime and amplitude. Geophysics 67, 167–176 (2002)

    Article  Google Scholar 

  23. Remacle, J.-F., Flaherty, J.E., Shephard, M.S.: An adaptive discontinuous Galerkin technique with an orthogonal basis applied to compressible flow problems. SIAM Rev. 45, 53–72 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Samet, H.: Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS. Addison–Wesley, Boston (1990)

    Google Scholar 

  25. Serna, S., Qian, J.: Fifth order weighted power-ENO schemes for Hamilton–Jacobi equations. J. Sci. Comput. 29, 57–81 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shi, J., Zhang, Y.-T., Shu, C.-W.: Resolution of high order WENO schemes for complicated flow structures. J. Comput. Phys. 186, 690–696 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shu, C.W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Cockburn, B., Johnson, C., Shu, C.W., Tadmor, E. (eds.), Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics, vol. 1697, pp. 325–432. Springer, Berlin (1998)

    Chapter  Google Scholar 

  28. Shu, C.W., Osher, S.J.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shu, C.W., Osher, S.J.: Efficient implementation of essentially non-oscillatory shock capturing schemes II. J. Comput. Phys. 83, 32–78 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  30. Strain, J.: Tree methods for moving interfaces. J. Comput. Phys. 151(2), 616–648 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianliang Qian.

Additional information

The authors were partially supported by an ONR MURI grant N00014-02-1-0720. The third author was partially supported by NSF DMS-0542174.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cecil, T.C., Osher, S.J. & Qian, J. Essentially Non-Oscillatory Adaptive Tree Methods. J Sci Comput 35, 25–41 (2008). https://doi.org/10.1007/s10915-007-9164-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-007-9164-6

Keywords

Navigation