Skip to main content
Log in

Detection of Edges in Spectral Data III—Refinement of the Concentration Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Edge detection from Fourier spectral data is important in many applications including image processing and the post-processing of solutions to numerical partial differential equations. The concentration method, introduced by Gelb and Tadmor in 1999, locates jump discontinuities in piecewise smooth functions from their Fourier spectral data. However, as is true for all global techniques, the method yields strong oscillations near the jump discontinuities, which makes it difficult to distinguish true discontinuities from artificial oscillations. This paper introduces refinements to the concentration method to reduce the oscillations. These refinements also improve the results in noisy environments. One technique adds filtering to the concentration method. Another uses convolution to determine the strongest correlations between the waveform produced by the concentration method and the one produced by the jump function approximation of an indicator function. A zero crossing based concentration factor, which creates a more localized formulation of the jump function approximation, is also introduced. Finally, the effects of zero-mean white Gaussian noise on the refined concentration method are analyzed. The investigation confirms that by applying the refined techniques, the variance of the concentration method is significantly reduced in the presence of noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Archibald, R., Chen, K., Gelb, A., Renaut, R.: Improving tissue segmentation of human brain MRI through pre-processing by the Gegenbauer reconstruction method. NeuroImage 20(1), 489–502 (2003)

    Article  Google Scholar 

  2. Archibald, R., Gelb, A.: Reducing the effects of noise in image reconstruction. J. Sci. Comput. 17, 167–180 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Archibald, R., Gelb, A.: A method to reduce the Gibbs ringing artifact in MRI scans while keeping tissue boundary integrity. IEEE Trans. Med. Imag. 21(4), 305–319 (2002)

    Article  Google Scholar 

  4. Banerjee, N., Geer, J.: Exponentially accurate approximations to piecewise smooth periodic Lipschitz functions based on Fourier series partial sums. J. Sci. Comput. 13, 419–460 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bary, N.: Treatise of Trigonometric Series. Macmillan Co., New York (1964)

    Google Scholar 

  6. Bauer, R.: Band filters for determining shock locations. Ph.D. thesis, Applied Mathematics, Brown University, Providence, Rhode Island (1995)

  7. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  8. Cates, D.: Edge detection using Fourier data with applications. Ph.D. dissertation, Arizona State University (2007)

  9. Clark, J.: Authenticating edges produced by zero crossing algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 11(1), 43–57 (1989)

    Article  MATH  Google Scholar 

  10. Curlander, J., McDonough, R.: Synthetic Aperture Radar Systems and Signal Processing. Wiley, New York (1991)

    MATH  Google Scholar 

  11. Eckhoff, K.S.: Accurate reconstructions of functions of finite regularity from truncated series expansions. Math. Comput. 64, 671–690 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Eckhoff, K.: On a high order numerical method for functions with singularities. Math. Comput. 67, 1063–1087 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gelb, A., Tadmor, E.: Detection of edges in spectral data. Appl. Comput. Harmon. Anal. 7, 101–135 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gelb, A., Tadmor, E.: Detection of edges in spectral data II—nonlinear enhancement. Soc. Ind. Appl. Math. J. Numer. Anal. 38(4), 1389–1408 (2000)

    MATH  MathSciNet  Google Scholar 

  15. Gelb, A., Tadmor, E.: Enhanced spectral viscosity approximation for conservation laws. Appl. Numer. Math. 33, 1–21 (2000)

    Article  MathSciNet  Google Scholar 

  16. Gelb, A., Tadmor, E.: Adaptive edge detectors for piecewise smooth data based on the minmod limiter. J. Sci. Comput. 28(2–3), 279–306 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gelb, A., Tanner, J.: Robust reprojection methods for the resolution of the Gibbs phenomenon. Appl. Comput. Appl. Anal. 20(1), 3–25 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time Dependent Problems. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  19. Gottlieb, D., Shu, C.-W.: On the Gibbs phenomenon and its resolution. Soc. Ind. Appl. Math. Rev. 30, 644–668 (1997)

    MathSciNet  Google Scholar 

  20. Gottlieb, D., Tadmor, E.: Recovering pointwise values of discontinuous data within spectral accuracy. In: Murman, E.M., Abarbanel, S.S. (eds.) Progress and Supercomputing in Computational Fluid Dynamics, Proceedings of a 1984 U.S.–Israel Workshop. Progress in Scientific Computing, vol. 6 (1985)

  21. Hildreth, E., Marr, D.: Theory of edge detection. Proc. R. Soc. Lond. B 207, 187–217 (1980)

    Google Scholar 

  22. Hwang, W., Mallat, S.: Singularity detection and processing with wavelets. IEEE Trans. Inf. Theory 38, 617–643 (1992)

    Article  MathSciNet  Google Scholar 

  23. Jain, A.: Fundamentals of Digital Image Processing. Prentice Hall, New York (1986)

    Google Scholar 

  24. Jung, J.-H., Shizgal, B.: Towards the resolution of the Gibbs phenomena. J. Comput. Appl. Math. 161(1), 41–65 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kopriva, D.: A practical assessment of spectral accuracy for hyperbolic problems with discontinuities. J. Sci. Comput. 2(3), 249–262 (1987)

    Article  MATH  Google Scholar 

  26. Kvernadze, G.: Determination of the jumps of a bounded function by its Fourier series. J. Approx. Theory 92, 167–190 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lanczos, C.: Discourse on Fourier Series. Hafner, New York (1966)

    MATH  Google Scholar 

  28. Liang, Z., Lauterbur, P.: Principles of Magnetic Resonance Imaging: A Signal Processing Perspective. The Institute of Electrical and Electronics Engineers Press, New York (2000)

    Google Scholar 

  29. Simulated Brain Database, McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University. http://www.bic.mni.mcgill.ca/brainweb/

  30. Medioni, D., Ulupinar, F.: Refining edges detected by a LoG operator. Comput. Vis. Graph. Image Process. 51, 275–298 (1990)

    Article  Google Scholar 

  31. Oliver, C., Quegan, S.: Understanding Synthetic Aperture Radar Images. Artech House, Boston (1998)

    Google Scholar 

  32. Roberts, L.: Machine perception of three dimensional solids. In: Tippett, J., Clapp, L. (eds.) Optical and Electro-Optical Information Processing. MIT Press, Cambridge (1965)

    Google Scholar 

  33. Sobel, I.: An isotropic 3×3 image gradient operator. In: Freeman, H. (ed.) Machine Vision for Three-Dimensional Scenes. Academic Press, Boston (1990)

    Google Scholar 

  34. Tadmor, E., Tanner, J.: Adaptive mollifiers—high resolution recovery of piecewise smooth data from its spectral information. Found. Comput. Math. 2, 155–189 (2002)

    MATH  MathSciNet  Google Scholar 

  35. Tanner, J.: Optimal filter and mollifier for piecewise smooth spectral data. Math. Comput. 75, 767–790 (2005)

    MathSciNet  Google Scholar 

  36. Vandeven, H.: Family of spectral filters for discontinuous problems. J. Sci. Comput. 6(2), 159–192 (1991)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Gelb.

Additional information

This work was partially supported by NSF grants CNS 0324957, DMS 0510813, DMS 0652833, and NIH grant EB 025533-01 (AG).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gelb, A., Cates, D. Detection of Edges in Spectral Data III—Refinement of the Concentration Method. J Sci Comput 36, 1–43 (2008). https://doi.org/10.1007/s10915-007-9170-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-007-9170-8

Keywords

Navigation