Skip to main content
Log in

Stabilization by Local Projection for Convection–Diffusion and Incompressible Flow Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We give a survey on recent developments of stabilization methods based on local projection type. The considered class of problems covers scalar convection–diffusion equations, the Stokes problem and the linearized Navier–Stokes equations. A new link of local projection to the streamline diffusion method is shown. Numerical tests for different type of boundary layers arising in convection–diffusion problems illustrate the stabilizing properties of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baiocchi, C., Brezzi, F., Franca, L.P.: Virtual bubbles and GaLS. Comput. Methods Appl. Mech. Eng. 105, 125–142 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Becker, R., Braack, M.: A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38(4), 173–199 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Becker, R., Braack, M.: A two-level stabilization scheme for the Navier–Stokes equations. In: Feistauer, M., Dolejší, V., Knobloch, P., Najzar, K. (eds.) Numerical Mathematics and Advanced Applications, pp. 123–130. Springer, Berlin (2004)

    Google Scholar 

  4. Braack, M., Burman, E.: Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method. SIAM J. Numer. Anal. 43, 2544–2566 (2006)

    MATH  MathSciNet  Google Scholar 

  5. Braack, M., Burman, E., John, V., Lube, G.: Stabilized finite element methods for the generalized Oseen problem. Comput. Methods Appl. Mech. Eng. 196, 853–866 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brezzi, F., Marini, D., Russo, A.: Applications of the pseudo residual-free bubbles to the stabilization of convection–diffusion problems. Comput. Methods Appl. Mech. Eng. 166, 51–63 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brezzi, F., Russo, A.: Choosing bubbles for advection–diffusion problems. Math. Models Methods Appl. Sci. 4, 571–587 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  9. Burman, E.: A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty. SIAM J. Numer. Anal. 43, 2012–2033 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Burman, E., Ern, A.: Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations. Math. Comput. 76, 1119–1140 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Burman, E., Fernandez, M.A., Hansbo, P.: Continuous interior penalty finite element method for Oseen’s equations. SIAM J. Numer. Anal. 44, 1248–1274 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Burman, E., Hansbo, P.: Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems. Comput. Methods Appl. Mech. Eng. 193, 1437–1453 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements. Applied Mathematical Sciences, vol. 159. Springer, New York (2004)

    MATH  Google Scholar 

  14. Franca, L.P., Frey, S.L.: Stabilized finite element methods: II. The incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 99, 209–233 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  15. Franca, L.P., Russo, A.: Recovering SUPG using Petrov–Galerkin formulations enriched with adjoint residual-free bubbles. Comput. Methods Appl. Mech. Eng. 182, 333–339 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ganesan, S., Matthies, G., Tobiska, L.: Local projection stabilization of equal order interpolation applied to the Stokes problem. Math. Comput. 77, 2039–2060 (2008)

    Article  MathSciNet  Google Scholar 

  17. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations. Springer Series in Computational Mathematics, vol. 5. Springer, Berlin (1986)

    MATH  Google Scholar 

  18. Guermond, J.-L.: Stabilization of Galerkin approximations of transport equations by subgrid modeling. Math. Model. Numer. Anal. 33, 1293–1316 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hughes, T.J.R., Franca, L.P., Balestra, M.: A new finite element formulation for computational fluid dynamics. V: Circumventing the Babuška–Brezzi condition: A stable Petrov–Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput. Methods Appl. Mech. Eng. 59, 85–99 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  20. Matthies, G., Skrzypacz, P., Tobiska, L.: A unified convergence analysis for local projection stabilisations applied to the Oseen problem. Math. Model. Numer. Anal. 41, 713–742 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Nävert, U.: A finite element method for convection-diffusion problems. Ph.D. thesis, Chalmers University of Technology, Göteborg (1982)

  22. Ohmori, K., Ushijima, T.: A technique of upstream type applied to a linear nonconforming finite element approximation of convective diffusion equation. RAIRO Numer. Anal. 18, 309–332 (1984)

    MATH  MathSciNet  Google Scholar 

  23. Roos, H.-G., Stynes, M., Tobiska, L.: Numerical Methods for Singularly Perturbed Differential Equations. Convection–Diffusion and Flow Problems. Springer, Berlin (1996)

    MATH  Google Scholar 

  24. Schieweck, F., Tobiska, L.: A nonconforming finite element method of upstream type applied to the stationary Navier–Stokes equations. RAIRO Numer. Anal. 23, 627–647 (1989)

    MATH  MathSciNet  Google Scholar 

  25. Schieweck, F., Tobiska, L.: An optimal order error estimate for an upwind discretization of the Navier–Stokes equations. Numer. Methods Partial Differ. Equ. 12, 107–127 (1996)

    Article  MathSciNet  Google Scholar 

  26. Tabata, M.: A finite element approximation corresponding to the upwind differencing. Memoirs Numer. Math. 1, 47–63 (1977)

    MathSciNet  Google Scholar 

  27. Tabata, M., Fujima, S.: An upwind finite element scheme for high Reynolds-number flow. Int. J. Numer. Methods Fluids 12, 305–322 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  28. Tobiska, L.: On the relationship of local projection stabilization to other stabilized methods for one-dimensional advection–diffusion equations. Comput. Methods Appl. Mech. Eng. doi:10.1016/j.cma.2008.10.016 (2008)

    Google Scholar 

  29. Tobiska, L., Verfürth, R.: Analysis of a streamline diffusion finite element method for the Stokes and Navier–Stokes equations. SIAM J. Numer. Anal. 33, 407–421 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sashikumaar Ganesan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganesan, S., Tobiska, L. Stabilization by Local Projection for Convection–Diffusion and Incompressible Flow Problems. J Sci Comput 43, 326–342 (2010). https://doi.org/10.1007/s10915-008-9259-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-008-9259-8

Keywords

Navigation