Skip to main content
Log in

Conservative Models and Numerical Methods for Compressible Two-Phase Flow

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The paper presents the computational framework for solving hyperbolic models for compressible two-phase flow by finite volume methods. A hierarchy of two-phase flow systems of conservation-form equations is formulated, including a general model with different phase velocities, pressures and temperatures; a simplified single temperature model with equal phase temperatures; and an isentropic model. The solution of the governing equations is obtained by the MUSCL-Hancock method in conjunction with the GFORCE and GMUSTA fluxes. Numerical results are presented for the water faucet test case, the Riemann problem with a sonic point and the water-air shock tube test case. The effect of the pressure relaxation rate on the numerical results is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abgrall, R., Saurel, R.: Discrete equations for physical and numerical compressible multiphase mixtures. J. Comput. Phys. 186, 361–396 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Andrianov, N., Saurel, R., Warnecke, G.: A simple method for compressible multiphase mixtures and interfaces. Int. J. Numer. Methods Fluids 41, 109–131 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baer, M., Nunziato, J.: A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Int. J. Multiph. Flow 12, 861–889 (1986)

    Article  MATH  Google Scholar 

  4. Bdzil, J., Menikoff, R., Son, S., et al.: Two-phase modeling of deflagration-to-detonation transition in granular materials: a critical examination of modeling issues. Phys. Fluids 11, 378–402 (1999)

    Article  MATH  Google Scholar 

  5. Brennen, C.E.: Fundamentals of Multiphase Flows. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  6. De Groot, S.R., Mazur, P.: Non-Equilibrium Thermodynamics. Dover, New York (1984)

    Google Scholar 

  7. Drikakis, D., Rider, W.: High-Resolution Methods for Incompressible and Low-Speed Flows. Springer, Berlin (2005)

    Google Scholar 

  8. Fermi, E.: Thermodynamics. Dover, New York (1956)

    Google Scholar 

  9. Friedrichs, K.O.: Conservation laws and the laws of motion in classical physics. Commun. Pure Appl. Math. 31, 123–131 (1978)

    MATH  MathSciNet  Google Scholar 

  10. Friedrichs, K.O., Lax, P.D.: Systems of conservation laws with a convex extension. Proc. Nat. Acad. Sci. USA 68, 1686–1688 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gavrilyuk, S., Saurel, R.: Mathematical and numerical modeling of two-phase compressible flows with micro-inertia. J. Comput. Phys. 175, 326–360 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Godunov, S.K.: An interesting class of quasilinear systems. Sov. Math. Dokl. 2, 947–949 (1961)

    MATH  Google Scholar 

  13. Godunov, S.K., Romensky, E.: Thermodynamics, conservation laws and symmetric forms of differential equations in mechanics of continuous media. In: Computational Fluid Dynamics Review, pp. 19–31. Wiley, New York (1995)

    Google Scholar 

  14. Godunov, S.K., Romenskii, E.: Elements of Continuum Mechanics and Conservation Laws. Kluwer Academic/Plenum, New York (2003)

    MATH  Google Scholar 

  15. Godunov, S.K., Mikhailova, T.Yu., Romenski, E.I.: Systems of thermodynamically coordinated laws of conservation invariant under rotations. Siberian Math. J. 37, 690–705 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Guillard, H., Duval, F.: A Darcy law for the drift velocity in a two-phase flow model. J. Comput. Phys. 224, 288–313 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics. Springer, New York (1998)

    MATH  Google Scholar 

  18. Ransom, V.H.: Numerical benchmark tests. In: Hewitt, G.F., Delhaye, J.M., Zuber, N. (eds.) Multiphase Science and Technology, vol. 3. Hemisphere, Washington (1987)

    Google Scholar 

  19. Romensky, E.: Hyperbolic systems of thermodynamically compatible conservation laws in continuum mechanics. Math. Comput. Model. 28, 115–130 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Romensky, E.: Thermodynamics and hyperbolic systems of balance laws in continuum mechanics. In: Toro, E.F. (ed.) Godunov Methods: Theory and Applications, pp. 745–761. Kluwer Academic/Plenum, New York (2001)

    Google Scholar 

  21. Romenski, E., Toro, E.F.: Compressible two-phase flows: two-pressure models and numerical methods. Comput. Fluid Dyn. J. 13, 403–416 (2004)

    Google Scholar 

  22. Romenski, E., Resnyansky, A.D., Toro, E.F.: Conservative hyperbolic formulation for compressible two-phase flow with different phase pressures and temperatures. Q. Appl. Math. 65, 259–279 (2007)

    MATH  MathSciNet  Google Scholar 

  23. Saurel, R., Abgrall, R.: A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150, 425–467 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Staedke, H., Francello, G., Worth, B., et al.: Advanced three-dimensional two-phase flow simulation tools for application to reactor safety. Nucl. Eng. Des. 235, 379–400 (2005)

    Article  Google Scholar 

  25. Toro, E.F.: Riemann Solvers and Numerical Methods in Fluid Dynamics, 2nd edn. Springer, Berlin (1999)

    Google Scholar 

  26. Toro, E.F.: MUSTA: a multi-stage numerical flux. Appl. Numer. Math. 256, 1464–1479 (2006)

    Article  MathSciNet  Google Scholar 

  27. Toro, E.F., Titarev, V.A.: MUSTA schemes for systems of conservation laws. J. Comput. Phys. 216, 403–429 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Zel’dovich, Ya.B., Raizer, Yu.B.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover, New York (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeniy Romenski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romenski, E., Drikakis, D. & Toro, E. Conservative Models and Numerical Methods for Compressible Two-Phase Flow. J Sci Comput 42, 68 (2010). https://doi.org/10.1007/s10915-009-9316-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-009-9316-y

Keywords

Navigation