Skip to main content
Log in

Efficient MFS Algorithms for Inhomogeneous Polyharmonic Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this work we develop an efficient algorithm for the application of the method of fundamental solutions to inhomogeneous polyharmonic problems, that is problems governed by equations of the form Δ u=f, ∈ℕ, in circular geometries. Following the ideas of Alves and Chen (Adv. Comput. Math. 23:125–142, 2005), the right hand side of the equation in question is approximated by a linear combination of fundamental solutions of the Helmholtz equation. A particular solution of the inhomogeneous equation is then easily obtained from this approximation and the resulting homogeneous problem in the method of particular solutions is subsequently solved using the method of fundamental solutions. The fact that both the problem of approximating the right hand side and the homogeneous boundary value problem are performed in a circular geometry, makes it possible to develop efficient matrix decomposition algorithms with fast Fourier transforms for their solution. The efficacy of the method is demonstrated on several test problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, C.J.S.: On the choice of source points in the method of fundamental solutions. Eng. Anal. Bound. Elem. 33, 1348–1361 (2009)

    Article  MathSciNet  Google Scholar 

  2. Alves, C.J.S., Chen, C.S.: A new method of fundamental solutions applied to nonhomogeneous elliptic problems. Adv. Comput. Math. 23, 125–142 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alves, C.J.S., Valtchev, S.S.: A Kansa type method using fundamental solutions applied to elliptic PDEs. In: Leitão, V.M.A., Alves, C.J.S., Armando Duarte, C. (eds.) Advances in Meshfree Techniques, Computational Methods in Applied Sciences, pp. 241–256. Springer, Dordrecht (2007)

    Chapter  Google Scholar 

  4. Alves, C.J.S., Colaço, M.J., Leitão, V.M.A., Martins, N.F.M., Orlande, H.R.B., Roberty, N.C.: Recovering the source term in a linear diffusion problem by the method of fundamental solutions. Inverse Probl. Sci. Eng. 16, 1005–1021 (2005)

    Article  Google Scholar 

  5. Alves, C.J.S., Martins, N.F.M., Roberty, N.C.: Full identification of acoustic sources with multiple frequencies and boundary measurements. Inverse Probl. Imaging 3, 275–294 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bialecki, B., Fairweather, G., Karageorghis, A.: Matrix decomposition algorithms for elliptic boundary value problems: a survey. Numer. Algorithms (2010). doi: 10.1007/s11075-010-9384-y

  7. Cheng, A.H.-D.: Particular solutions of Laplacian, Helmholtz-type, and polyharmonic operators involving higher order radial basis functions. Eng. Anal. Bound. Elem. 24, 531–538 (2000)

    Article  MATH  Google Scholar 

  8. Cheng, A.H.-D., Lafe, O., Grilli, S.: Dual-reciprocity BEM based on global interpolation functions. Eng. Anal. Bound. Elem. 13, 303–311 (1994)

    Article  Google Scholar 

  9. Cheng, A.H.-D., Antes, H., Ortner, N.: Fundamental solutions of products of Helmholtz and polyharmonic operators. Eng. Anal. Bound. Elem. 14, 187–191 (1994)

    Article  Google Scholar 

  10. Davis, P.J.: Circulant Matrices. Wiley, New York (1979)

    MATH  Google Scholar 

  11. Fairweather, G., Karageorghis, A.: The method of fundamental solutions for elliptic boundary value problems. Adv. Comput. Math. 9, 69–95 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB. World Scientific, Singapore (2007)

    MATH  Google Scholar 

  13. Golberg, M.A., Chen, C.S.: Discrete Projection Methods for Integral Equations. Computational Mechanics Publications, Southampton (1997)

    Google Scholar 

  14. Golberg, M.A., Chen, C.S.: The method of fundamental solutions for potential, Helmholtz and diffusion problems. In: Golberg, M.A. (ed.) Boundary Integral Methods and Mathematical Aspects, pp. 103–176. WIT Press/Computational Mechanics Publications, Boston (1999)

    Google Scholar 

  15. Golberg, M.A., Muleshkov, A.S., Chen, C.S., Cheng, A.H.-D.: Polynomial particular solutions for certain partial differential operators. Numer. Methods Partial Differ. Equ. 19, 112–133 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gorzelańczyk, P., Kołodziej, J.A.: Some remarks concerning the shape of the source contour with application of the method of fundamental solutions to elastic torsion of prismatic rods. Eng. Anal. Bound. Elem. 37, 64–75 (2008)

    Article  Google Scholar 

  17. Ingber, M.S., Chen, C.S., Tanski, J.A.: A mesh free approach using radial basis functions and parallel domain decomposition for solving three-dimensional diffusion equations. Int. J. Numer. Methods Eng. 60, 2183–2201 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Jin, B., Zheng, Y.: Boundary knot method for the Cauchy problem associated with the inhomogeneous Helmholtz equation. Eng. Anal. Bound. Elem. 29, 925–935 (2005)

    Article  MATH  Google Scholar 

  19. Kansa, E.J.: Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics-II. Solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. Appl. 19(8/9), 147–161 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  20. Karageorghis, A.: Efficient MFS algorithms in regular polygonal domains. Numer. Algorithms 50, 215–240 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Karageorghis, A.: A practical algorithm for determining the optimal pseudoboundary in the MFS. Adv. Appl. Math. Mech. 1, 510–528 (2009)

    MathSciNet  Google Scholar 

  22. Karageorghis, A.: Efficient Kansa-type MFS algorithm for elliptic problems. Numer. Algorithms 54, 261–278 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Karageorghis, A., Smyrlis, Y.-S.: Matrix decomposition algorithms related to the MFS for axisymmetric problems. In: Manolis, G.D., Polyzos, D. (eds.) Recent Advances in Boundary Element Methods, pp. 223–237. Springer, New York (2009)

    Chapter  Google Scholar 

  24. Karageorghis, A., Chen, C.S., Smyrlis, Y.-S.: A matrix decomposition RBF algorithm: approximation of functions and their derivatives. Appl. Numer. Math. 57, 304–319 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Karageorghis, A., Chen, C.S., Smyrlis, Y.-S.: Matrix decomposition RBF algorithm for solving 3D elliptic problems. Eng. Anal. Bound. Elem. 33, 1368–1373 (2009)

    Article  MathSciNet  Google Scholar 

  26. Kołodziej, J.A., Zieliński, A.P.: Boundary Collocation Techniques and Their Application in Engineering. WIT Press, Southampton (2009)

    Google Scholar 

  27. Lesnic, D.: On the boundary integral equations for a two-dimensional slowly rotating highly viscous fluid flow. Adv. Appl. Math. Mech. 1, 140–150 (2009)

    MathSciNet  Google Scholar 

  28. Lonsdale, B., Bloor, M.I.G., Kelmanson, M.A.: An iterative integral-equation method for 6th-order inhomogeneous partial differential equations. In: Ertekin, R.C., Brebbia, C.A., Tanaka, M., Shaw, R.P. (eds.) Boundary Element Technology XI, pp. 369–378. Computational Mechanics Publications, Southampton (1996)

    Google Scholar 

  29. Marin, L.: The method of fundamental solutions for inverse problems associated with the steady-state heat conduction in the presence of sources. Comput. Model. Eng. Sci. 30, 99–122 (2008)

    MathSciNet  Google Scholar 

  30. MATLAB, The MathWorks, Inc., 3 Apple Hill Dr., Natick, MA

  31. Smyrlis, Y.-S., Karageorghis, A.: Some aspects of the method of fundamental solutions for certain harmonic problems. J. Sci. Comput. 16, 341–371 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  32. Smyrlis, Y.-S., Karageorghis, A.: Some aspects of the method of fundamental solutions for certain biharmonic problems. Comput. Model. Eng. Sci. 4, 535–550 (2003)

    MATH  MathSciNet  Google Scholar 

  33. Tsai, C.C.: Particular solutions of Chebyshev polynomials for polyharmonic and poly-Helmholtz equations. Comput. Model. Eng. Sci. 27, 151–162 (2008)

    Google Scholar 

  34. Tsai, C.C.: The particular solutions for Thin plates resting on Pasternak foundations under arbitrary loadings. Numer. Methods Partial Diff. Equ. 26, 206–220 (2010)

    Article  MATH  Google Scholar 

  35. Tsai, C.C., Chen, C.S., Hsu, T.-W.: The method of particular solutions for solving axisymmetric polyharmonic and poly-Helmholtz equations. Eng. Anal. Bound. Elem. 33, 1396–1402 (2009)

    Article  MathSciNet  Google Scholar 

  36. Ushijima, T., Chiba, F.: Error estimates for a fundamental solution method applied to reduced wave problems in a domain exterior to a disc. J. Comput. Appl. Math. 159, 137–148 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  37. Valle, M.F., Colaço, M.J., Neto, F.S.: Estimation of the heat transfer coefficient by means of the method of fundamental solutions. Inverse Probl. Sci. Eng. 16, 777–795 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  38. Valtchev, S.S.: Numerical analysis of methods with fundamental solutions for acoustic and elastic wave propagation problems. PhD Thesis, Department of Mathematics, Instituto Superior Téchnico, Universidade Técnica de Lisboa, Lisbon (2008)

  39. Valtchev, S.S., Roberty, N.C.: A time-marching MFS scheme for heat conduction problems. Eng. Anal. Bound. Elem. 32, 480–493 (2008)

    Article  Google Scholar 

  40. Zhang, S., Jin, J.: Computation of Special Functions. Wiley, New York (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Karageorghis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karageorghis, A. Efficient MFS Algorithms for Inhomogeneous Polyharmonic Problems. J Sci Comput 46, 519–541 (2011). https://doi.org/10.1007/s10915-010-9418-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-010-9418-6

Keywords

Navigation