Skip to main content
Log in

A Prolate-Element Method for Nonlinear PDEs on the Sphere

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A p-type spectral-element method using prolate spheroidal wave functions (PSWFs) as basis functions, termed as the prolate-element method, is developed for solving partial differential equations (PDEs) on the sphere. The gridding on the sphere is based on a projection of the prolate-Gauss-Lobatto points by using the cube-sphere transform, which is free of singularity and leads to quasi-uniform grids. Various numerical results demonstrate that the proposed prolate-element method enjoys some remarkable advantages over the polynomial-based element method: (i) it can significantly relax the time step size constraint of an explicit time-marching scheme, and (ii) it can increase the accuracy and enhance the resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Gwaiz, M.A.: Sturm-Liouville Theory and Its Applications. Springer, Berlin (2007)

    Google Scholar 

  2. Beylkin, G., Sandberg, K.: Wave propagation using bases for bandlimited functions. Wave Motion 41(3), 263–291 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover, New York (2001)

    MATH  Google Scholar 

  4. Boyd, J.P.: Large mode number eigenvalues of the prolate spheroidal differential equation. Appl. Math. Comput. 145(2), 881–886 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boyd, J.P.: Prolate spheroidal wavefunctions as an alternative to Chebyshev and Legendre polynomials for spectral element and pseudospectral algorithms. J. Comput. Phys. 199(2), 688–716 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boyd, J.P.: Algorithm 840: computation of grid points, quadrature weights and derivatives for spectral element methods using prolate spheroidal wave functions-prolate elements. ACM Trans. Math. Softw. 31(1), 149–165 (2005)

    Article  MATH  Google Scholar 

  7. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interface free energy. J. Chem. Phys. 28(2), 258–267 (1958)

    Article  Google Scholar 

  8. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006)

    MATH  Google Scholar 

  9. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics. Springer, Berlin (2007)

    MATH  Google Scholar 

  10. Chen, Q.Y., Gottlieb, D., Hesthaven, J.S.: Spectral methods based on prolate spheroidal wave functions for hyperbolic PDEs. SIAM J. Numer. Anal. 43(5), 1912–1933 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. Tata McGraw-Hill, New Delhi (1972)

    Google Scholar 

  12. Deville, M.O., Fischer, P.F., Mund, E.H.: High-order Methods for Incompressible Fluid Flow. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  13. Flammer, C.: Spheroidal Wave Functions. Stanford University Press, Stanford (1957)

    MATH  Google Scholar 

  14. Giraldo, F.X., Rosmond, T.E.: A scalable spectral element Eulerian atmospheric model (SEE-AM) for NWP: dynamical core tests. Mon. Weather Rev. 132(1), 133–153 (2004)

    Article  Google Scholar 

  15. Greer, J.B., Bertozzi, A.L., Sapiro, G.: Fourth order partial differential equations on general geometries. J. Comput. Phys. 216(1), 216–246 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hesthaven, J., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  17. Hundsdorfer, W.: Numerical Solutions of Time-Dependent Advection-Diffusion-Reaction Equations. Springer, Berlin (2007)

    Google Scholar 

  18. Iskandarani, M., Haidvogel, D.B., Boyd, J.P.: A staggered spectral element model with application to the oceanic shallow water equations. Int. J. Numer. Methods Fluids 20(5), 393–414 (1995)

    Article  MATH  Google Scholar 

  19. Kosloff, D., Tal-Ezer, H.: A modified Chebyshev pseudospectral method with an O(N −1) time step restriction. J. Comput. Phys. 104(2), 457–469 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kovvali, N., Lin, W., Carin, L.: Pseudospectral method based on prolate spheroidal wave functions for frequency-domain electromagnetic simulations. IEEE Trans. Antennas Propag. 53(12), 3990–4000 (2005)

    Article  Google Scholar 

  21. Landau, H.J., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty-III. The dimension of the space of essentially time- and band-limited signals. Bell Syst. Tech. J. 41, 1295–1336 (1962)

    MathSciNet  MATH  Google Scholar 

  22. Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Physica D 179(3–4), 211–228 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Loft, R.D., Thomas, S.J., Dennis, J.M.: Terascale spectral element dynamical core for atmospheric general circulation models. In: Proceedings of the 2001 ACM/IEEE conference on Supercomputing (CDROM), p. 18. ACM, New York (2001)

    Chapter  Google Scholar 

  24. McGregor, J.L.: Semi-Lagrangian advection on conformal-cubic grids. Mon. Weather Rev. 124(6), 1311–1322 (1996)

    Article  Google Scholar 

  25. Meixer, J., Schke, F.W.: Mathieusche Funktionen und Sphroidfunktionen. Springer, Berlin (1954)

    Google Scholar 

  26. Nair, R.D., Jablonowski, C.: Moving vortices on the sphere: A test case for horizontal advection problems. Mon. Weather Rev. 136(2), 699–711 (2008)

    Article  Google Scholar 

  27. Nair, R.D., Thomas, S.J., Loft, R.D.: A discontinuous Galerkin transport scheme on the cubed sphere. Mon. Weather Rev. 133(4), 814–828 (2005)

    Article  Google Scholar 

  28. Patera, A.T.: A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys. 54(3), 468–488 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  29. Phillips, N.A.: A coordinate system having some special advantages for numerical forecasting. J. Atmos. Sci. 14(2), 184–185 (1957)

    Google Scholar 

  30. Prato, D.P.: Direct derivation of differential operators in curvilinear coordinates. Am. J. Phys. 45, 1003 (1977)

    Article  Google Scholar 

  31. Rancic, M., Purser, R.J., Mesinger, F.: A global shallow-water model using an expanded spherical cube: Gnomonic versus conformal coordinates. Q. J. R. Meteorol. Soc. 122(532), 959–982 (1996)

    Google Scholar 

  32. Ronchi, C., Iacono, R., Paolucci, P.S.: The “cubed sphere”: a new method for the solution of partial differential equations in spherical geometry. J. Comput. Phys. 124(1), 93–114 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sadourny, R.: Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids. Mon. Weather Rev. 100(2), 136–144 (1972)

    Article  Google Scholar 

  34. Sanderson, A.R., Kirby, R.M., Johnson, C.R., Yang, L.: Advanced reaction-diffusion models for texture synthesis. J. Graph. GPU Game Tools 11(3), 47–71 (2006)

    Google Scholar 

  35. Schnakenberg, J.: Simple chemical reaction systems with limit cycle behaviour. J. Theor. Biol. 81(3), 389–400 (1979)

    Article  MathSciNet  Google Scholar 

  36. Shen, J., Wang, L.L.: Error analysis for mapped Legendre spectral and pseudospectral methods. SIAM J. Numer. Anal. 42(1), 326–349 (2005)

    Article  MathSciNet  Google Scholar 

  37. Shkolnisky, Y., Tygert, M., Rokhlin, V.: Approximation of bandlimited functions. Appl. Comput. Harmon. Anal. 21(3), 413 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Slepian, D.: Prolate spheroidal wave functions, Fourier analysis and uncertainty-IV. Extensions to many dimensions; generalized prolate spheroidal functions. Bell System Tech. J. 43, 3009–3057 (1964)

    MathSciNet  MATH  Google Scholar 

  39. Slepian, D., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty-I. Bell Syst. Tech. J. 40, 43–63 (1961)

    MathSciNet  MATH  Google Scholar 

  40. Taylor, M., Tribbia, J., Iskandarani, M.: The spectral element method for the shallow water equations on the sphere. J. Comput. Phys. 130(1), 92–108 (1997)

    Article  MATH  Google Scholar 

  41. Thomas, S.J., Loft, R.D.: Semi-implicit spectral element atmospheric model. J. Sci. Comput. 17(1), 339–350 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. Thomas, S.J., Dennis, J.M., Tufo, H.M., Fischer, P.F.: A Schwarz preconditioner for the cubed-sphere. SIAM J. Sci. Comput. 25(2), 442–453 (2004)

    Article  MathSciNet  Google Scholar 

  43. Turing, A.M.: The chemical basis of morphogenesis. Bull. Math. Biol. 52(1), 153–197 (1990)

    Google Scholar 

  44. Turk, G.: Generating textures on arbitrary surfaces using reaction-diffusion. In: Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques, p. 298. ACM, New York (1991)

    Google Scholar 

  45. Wang, L.L.: Analysis of spectral approximations using prolate spheroidal wave functions. Math. Comput. 79(270), 807–827 (2010)

    MATH  Google Scholar 

  46. Witkin, A., Kass, M.: Reaction-diffusion textures. ACM Siggraph Comput. Graph. 25(4), 299–308 (1991)

    Article  Google Scholar 

  47. Wu, C., Deng, J., Chen, F.: Diffusion equations over arbitrary triangulated surfaces for filtering and texture applications. IEEE Trans. Vis. Comput. Graph. 14(3), 666–679 (2008)

    Article  Google Scholar 

  48. Xiao, H., Rokhlin, V., Yarvin, N.: Prolate spheroidal wavefunctions, quadrature and interpolation, Special issue to celebrate Pierre Sabatier’s 65th birthday (Montpellier). Inverse Probl. 17(4), 805–838 (2000)

    Article  MathSciNet  Google Scholar 

  49. Yang, C., Cao, J., Cai, X.C.: A fully implicit domain decomposition algorithm for shallow water equations on the cubed-sphere. SIAM J. Sci. Comput. 32(1), 418–438 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Yang, L., Zhabotinsky, A.M., Epstein, I.R.: Stable squares and other oscillatory Turing patterns in a reaction-diffusion model. Phys. Rev. Lett. 92(19), 198303 (2004)

    Article  Google Scholar 

  51. Yang, X.: Error analysis of a stabilized semi-implicit method for Allen-Cahn equation. Discrete Contin. Dyn. Syst. Ser. B 11(4), 1057–1070 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Lian Wang.

Additional information

This work is partially supported by Singapore AcRF Tier 1 Grant RG58/08, Singapore MOE Grant T207B2202, and Singapore NRF2007IDM-IDM002-010.

The work of the second author is also partially supported by a Leading Academic Discipline Project of Shanghai Municipal Education Commission, China (No. J50101).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Wang, LL. & Rong, Z. A Prolate-Element Method for Nonlinear PDEs on the Sphere. J Sci Comput 47, 73–92 (2011). https://doi.org/10.1007/s10915-010-9421-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-010-9421-y

Keywords

Navigation