Skip to main content
Log in

On the Convergence and Well-Balanced Property of Path-Conservative Numerical Schemes for Systems of Balance Laws

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper deals with the numerical approximation of one-dimensional hyperbolic systems of balance laws. We consider these systems as a particular case of hyperbolic systems in nonconservative form, for which we use the theory introduced by Dal Maso, LeFloch and Murat (J. Math. Pures Appl. 74:483, 1995) in order to define the concept of weak solutions. This theory is based on the prescription of a family of paths in the phases space. We also consider path-conservative schemes, that were introduced in Parés (SIAM J. Numer. Anal. 44:300, 2006). The first goal is to prove a Lax-Wendroff type convergence theorem. In Castro et al. (J. Comput. Phys. 227:8107, 2008) it was shown that, for general nonconservative systems a rather strong convergence assumption is needed to prove such a result. Here, we prove that the same hypotheses used in the classical Lax-Wendroff theorem are enough to ensure the convergence in the particular case of systems of balance laws, as the numerical results shown in Castro et al. (J. Comput. Phys. 227:8107, 2008) seemed to suggest. Next, we study the relationship between the well-balanced properties of path-conservative schemes applied to systems of balance laws and the family of paths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abgrall, R., Karni, S.: Two-layer shallow water system: a relaxation approach. SIAM J. Sci. Comput. 31, 1603–1627 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Abgrall, R., Karni, S.: A comment on the computation of non-conservative products. J. Comput. Phys. 229, 2759–2763 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alcrudo, F., Benkhaldoun, F.: Exact solutions to the Riemann problem of the shallow water equations with a bottom step. Comput. Fluids 30, 643–671 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Andrianov, N., Warnecke, G.: On the solution to the Riemann problem for the compressible duct flow. SIAM J. Appl. Math. 64, 878–901 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Audusse, E., Bouchut, F., Bristeau, M.O., Klein, R., Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25, 2050–2065 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bermúdez, A., Vázquez, M.E.: Upwind methods for hyperbolic conservation laws with source terms. Comput. Fluids 23, 1049–1071 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bernetti, R., Titarev, V.A., Toro, E.F.: Exact solution of the Riemann problem for the shallow water equations with discontinuous bottom geometry. J. Comput. Phys. 227, 3212–3243 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bouchut, F.: Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources. Birkhäuser, Basel (2004)

    MATH  Google Scholar 

  9. Castro, M.J., Pardo, A., Parés, C.: Well-balanced numerical schemes based on a generalized hydrostatic reconstruction technique. Math. Mod. Meth. Appl. Sci. 17, 2055–2113 (2007)

    Article  MATH  Google Scholar 

  10. Castro, M.J., LeFloch, P.G., Muñoz-Ruiz, M.L., Parés, C.: Why many theories of shock waves are necessary: convergence error in formally path-consistent schemes. J. Comput. Phys. 227, 8107–8129 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Castro, M.J., Pardo, A., Parés, C., Toro, E.F.: On some fast well-balanced first order solvers for nonconservative systems. Math. Comput. 79, 1427–1472 (2010)

    MATH  Google Scholar 

  12. Dal Maso, G., LeFloch, P.G., Murat, F.: Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74, 483–548 (1995)

    MATH  MathSciNet  Google Scholar 

  13. De Vuyst, F.: Schémas non-conservatifs et schémas cinétiques pour la simulation numérique d’écoulements hypersoniques non visqueux en déséquilibre thermochimique. Thése de Doctorat de l’Université Paris VI (1994)

  14. Goatin, P., LeFloch, P.G.: The Riemann problem for a class of resonant hyperbolic systems of balance laws. Ann. Inst. H. Poincaré Anal. Non Lin. 21, 881–902 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Godunov, S.K.: A finite difference method for the computation of discontinuous solutions of the equations of fluid dynamics. Mat. Sb. 47, 357–393 (1959)

    MathSciNet  Google Scholar 

  16. Gosse, L.: A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms. Comput. Math. Appl. 39, 135–159 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Karni, S.: Computations of shallow water flows in channels. In: The Proceedings of Numhyp 2009, Conference on Numerical Approximations of Hyperbolic Systems with Source Terms and Applications (2009) (to appear)

  18. Greenberg, J.M., LeRoux, A.Y.: A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33, 1–16 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hou, T., LeFloch, P.G.: Why nonconservative schemes converge to wrong solutions: error analysis. Math. Comput. 62, 497–530 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 7, 159–193 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lax, P.D., Wendroff, B.: Systems of conservation laws. Commun. Pure Appl. Math. 13, 217–237 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  22. LeFloch, P.G.: Shock Waves for Nonlinear Hyperbolic Systems in Nonconservative Form. Institute for Mathematics and its Applications, Minneapolis (1989). Preprint 593

    Google Scholar 

  23. Muñoz-Ruiz, M.L., Parés, C.: Godunov method for nonconservative hyperbolic systems. ESAIM: M2AN 41, 169–185 (2007)

    Article  MATH  Google Scholar 

  24. Parés, C., Castro, M.J.: On the well-balance property of Roe’s method for nonconservative hyperbolic systems. Applications to shallow water systems. ESAIM: M2AN 38, 821–852 (2004)

    Article  MATH  Google Scholar 

  25. Parés, C.: Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J. Numer. Anal. 44, 300–321 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Perthame, B., Simeoni, C.: Convergence of the upwind interface source method for hyperbolic conservation laws. In: Thou, Tadmor (eds.) Hyperbolic Problems: Theory, Numerics, Applications. Proceedings of the Ninth International Conference on Hyperbolic Problems, pp. 61–78. Springer, Berlin (2003)

    Chapter  Google Scholar 

  27. Roe, P.L.: Approximate Riemann solvers, paremeter vectors, and difference schemes. J. Comput. Phys. 43, 357–372 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  28. Roe, P.L.: Upwinding difference schemes for hyperbolic conservation laws with source terms. In: Carasso, Raviart, Serre (eds.) Nonlinear Hyperbolic Problems, Lect. Notes Math., pp. 41–51. Springer, Berlin (1986)

    Google Scholar 

  29. Rosatti, G., Begnudelli, L.: The Riemann problem for the one-dimensional free-surface shallow water equations with a bed step: theoretical analysis and numerical simulations. J. Comput. Phys. 229, 760–787 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  30. Toumi, I.: A weak formulation of Roe’s approximate Riemann solver. J. Comput. Phys. 102, 360–373 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Luz Muñoz-Ruiz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz-Ruiz, M.L., Parés, C. On the Convergence and Well-Balanced Property of Path-Conservative Numerical Schemes for Systems of Balance Laws. J Sci Comput 48, 274–295 (2011). https://doi.org/10.1007/s10915-010-9425-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-010-9425-7

Keywords

Navigation