Skip to main content
Log in

A Generic Stabilization Approach for Higher Order Discontinuous Galerkin Methods for Convection Dominated Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we present a stabilized Discontinuous Galerkin (DG) method for hyperbolic and convection dominated problems. The presented scheme can be used in several space dimension and with a wide range of grid types. The stabilization method preserves the locality of the DG method and therefore allows to apply the same parallelization techniques used for the underlying DG method. As an example problem we consider the Euler equations of gas dynamics for an ideal gas. We demonstrate the stability and accuracy of our method through the detailed study of several test cases in two space dimension on both unstructured and cartesian grids. We show that our stabilization approach preserves the advantages of the DG method in regions where stabilization is not necessary. Furthermore, we give an outlook to adaptive and parallel calculations in 3d.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R., Ohlberger, M., Sander, O.: A generic grid interface for parallel and adaptive scientific computing. II: Implementation and tests in Dune. Computing 82(2–3), 121–138 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Ohlberger, M., Sander, O.: A generic grid interface for parallel and adaptive scientific computing. I: Abstract framework. Computing 82(2–3), 103–119 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Burbeau, A., Sagaut, P., Bruneau, Ch.-H.: A problem-independent limiter for high-order Runge-Kutta discontinuous Galerkin methods. J. Comput. Phys. 169(1), 111–150 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Christov, I., Popov, B.: New non-oscillatory central schemes on unstructured triangulations for hyperbolic systems of conservation laws. J. Comput. Phys. 227(11), 5736–5757 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws V: Multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dedner, A., Klöfkorn, R.: A generic stabilization approach for higher order discontinuous Galerkin methods for convection dominated problems. Preprint No. 8, Universität Freiburg (2008)

  8. Dedner, A., Klöfkorn, R.: Stabilization for discontinuous Galerkin methods applied to systems of conservation laws. In: Proc. of the 12th International Conference on Hyperbolic Problems: Theory, Numerics, Applications, Maryland (2008)

    Google Scholar 

  9. Dedner, A., Klöfkorn, R., Nolte, M., Ohlberger, M.: A generic interface for parallel and adaptive scientific computing: Abstraction principles and the Dune-Fem module. Preprint No. 3, Mathematisches Institut, Universität Freiburg (2009)

  10. Dedner, A., Makridakis, C., Ohlberger, M.: Error control for a class of Runge-Kutta discontinuous Galerkin methods for nonlinear conservation laws. SIAM J. Numer. Anal. 45(2), 514–538 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dolejší, V., Feistauer, M., Schwab, C.: On some aspects of the discontinuous Galerkin finite element method for conservation laws. Math. Comput. Simul. 61(3–6), 333–346 (2003)

    Article  MATH  Google Scholar 

  12. Ern, A., Proft, J.: A posteriori discontinuous Galerkin error estimates for transient convection-diffusion equations. Appl. Math. Lett. 18(7), 833–841 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hagen, T.R., Lie, K.-A., Natvig, J.R.: Solving the Euler equations on graphics processing units. In: Alexandrov V.N., et al. (eds.) Proceedings, Part IV, Computational Science—ICCS 2006. 6th International Conference, Reading, UK, 28–31 May, 2006. Lecture Notes in Computer Science, vol. 3994, pp. 220–227. Springer, Berlin (2006)

    Google Scholar 

  15. Hoteit, H., Ackerer, Ph., Mosé, R., Erhel, J., Philippe, B.: New two-dimensional slope limiters for discontinuous Galerkin methods on arbitrary meshes. Int. J. Numer. Methods Eng. 61(14), 2566–2593 (2004)

    Article  MATH  Google Scholar 

  16. Klieber, W., Rivière, B.: Adaptive simulations of two-phase flow by discontinuous Galerkin methods. Comput. Methods Appl. Mech. Eng. 196(1–3), 404–419 (2006)

    Article  MATH  Google Scholar 

  17. Krivodonova, L.: Limiters for high-order discontinuous Galerkin methods. J. Comput. Phys. 226(1), 879–896 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Krivodonova, L., Xin, J., Remacle, J.-F., Chevaugeon, N., Flaherty, J.E.: Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Appl. Numer. Math. 48(3–4), 323–338 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kröner, D.: Numerical Schemes for Conservation Laws. Wiley, Teubner, New York, Leipzig (1997)

    MATH  Google Scholar 

  20. Kröner, D., Ohlberger, M.: A posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multi dimensions. Math. Comput. 69, 25–39 (2000)

    MATH  Google Scholar 

  21. Luo, H., Baum, J.D., Löhner, R.: A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids. J. Comput. Phys. 225(1), 686–713 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Persson, P.-O., Peraire, J.: Sub-cell shock capturing for discontinuous Galerkin methods. In: 44th AIAA Aerospace Sciences Meeting, AIAA-2006-0112, Reno, Nevada, Department of Aeronautics & Astronautics. Massachusetts Institute of Technology (2006)

  23. Qiu, J., Shu, C.-W.: A comparison of troubled-cell indicators for Runge-Kutta discontinuous Galerkin methods using weighted essentially nonoscillatory limiters. SIAM J. Sci. Comput. 27(3), 995–1013 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Qiu, J., Shu, C.-W.: A comparison of troubled-cell indicators for Runge-Kutta discontinuous Galerkin methods using weighted essentially nonoscillatory limiters. SIAM J. Sci. Comput. 27(3), 995–1013 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Qiu, J., Shu, C.-W.: Runge-Kutta discontinuous Galerkin method using WENO limiters. SIAM J. Sci. Comput. 26(3), 907–929 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Wesenberg, M.: Efficient finite—volume schemes for magnetohydrodynamics simulations in solar physics. Ph.D. thesis, Universität Freiburg (2003)

  27. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  28. Xin, Jianguo, Flaherty, Joseph E.: Viscous stabilization of discontinuous Galerkin solutions of hyperbolic conservation laws. Appl. Numer. Math. 56(3–4), 444–458 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Klöfkorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dedner, A., Klöfkorn, R. A Generic Stabilization Approach for Higher Order Discontinuous Galerkin Methods for Convection Dominated Problems. J Sci Comput 47, 365–388 (2011). https://doi.org/10.1007/s10915-010-9448-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-010-9448-0

Keywords

Navigation