Skip to main content
Log in

Strong-Stability-Preserving 7-Stage Hermite–Birkhoff Time-Discretization Methods

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Optimal, 7-stage, explicit, strong-stability-preserving (SSP) Hermite–Birkhoff (HB) methods of orders 4 to 8 with nonnegative coefficients are constructed by combining linear k-step methods with a 7-stage Runge–Kutta (RK) method of order 4. Compared to Huang’s hybrid methods of the same order, the new methods generally have larger effective SSP coefficients and larger maximum effective CFL numbers, \(\text{num}_{\text{eff}}\), on Burgers’ equation, independently of the number k of steps, especially when k is small for both methods. Based on \(\text{num}_{\text{eff}}\), some new methods of order 4 compare favorably with other methods of the same order, including RK104 of Ketcheson. The new SSP HB methods are listed in their Shu–Osher representation in Appendix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cockburn, B., Shu, C.W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

    MATH  MathSciNet  Google Scholar 

  2. Constantinescu, E.W., Sandu, A.: Optimal explicit strong-stability-preserving general linear methods: complete results. Tech. report ANL/MCS-TM-304, Argonne National Laboratory, Mathematics and Computer Science Division Technical Memorandum (Jan. 2009)

  3. Gottlieb, S.: On high order strong stability preserving Runge–Kutta and multi step time discretizations. J. Sci. Comput. 25, 105–128 (2005)

    MATH  MathSciNet  Google Scholar 

  4. Gottlieb, S., Ketcheson, D.I., Shu, C.W.: High order strong stability preserving time discretization. J. Sci. Comput. 38(3), 251–289 (2009). doi:10.1007/s10915-008-9239-z

    Article  MATH  MathSciNet  Google Scholar 

  5. Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  7. Huang, C.: Strong stability preserving hybrid methods. Appl. Numer. Math. 59, 891–904 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Jiang, G., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ketcheson, D.I.: Highly efficient strong stability preserving Runge–Kutta methods with low-storage implementations. SIAM J. Sci. Comput. 30(4), 2113–2136 (2008)

    Article  MathSciNet  Google Scholar 

  10. Laney, C.: Computational Gasdynamics. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  11. Nguyen-Ba, T., Kengne, E., Vaillancourt, R.: One-step 4-stage Hermite–Birkhoff–Taylor ODE solver of order 12. Can. Appl. Math. Q. 16(1), 77–94 (2008)

    MATH  MathSciNet  Google Scholar 

  12. Nguyen-Ba, T., Yagoub, H., Li, Y., Vaillancourt, R.: Variable-step variable-order 3-stage Hermite–Birkhoff ODE solver of order 5 to 15. Can. Appl. Math. Q. 14(1), 43–69 (2006)

    MATH  MathSciNet  Google Scholar 

  13. Osher, S., Chakravarthy, S.: High resolution schemes and the entropy condition. SIAM J. Numer. Anal. 21, 955–984 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ruuth, S.J.: Global optimization of explicit strong-stability-preserving Runge–Kutta methods. Math. Comput. 75, 183–207 (2006)

    MATH  MathSciNet  Google Scholar 

  15. Ruuth, S.J., Hundsdorfer, W.: High-order linear multistep methods with general monotonicity and boundedness properties. J. Comput. Phys. 209, 226–248 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ruuth, S.J., Spiteri, R.J.: Two barriers on strong-stability-preserving time discretization methods. J. Sci. Comput. 17, 211–220 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ruuth, S.J., Spiteri, R.J.: High-order strong-stability-preserving Runge–Kutta methods with down-biased spatial discretizations. SIAM J. Numer. Anal. 42, 974–996 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Shu, C.W.: Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9, 1073–1084 (1988)

    Article  MATH  Google Scholar 

  19. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  20. Spiteri, R.J., Ruuth, S.J.: A new class of optimal high-order strong-stability-preserving time-stepping schemes. SIAM J. Numer. Anal. 40, 469–491 (2007)

    Article  MathSciNet  Google Scholar 

  21. Spiteri, R.J., Ruuth, S.J.: Nonlinear evolution using optimal fourth-order strong-stability-preserving Runge–Kutta methods. Math. Comput. Simul. 62, 125–135 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21, 995–1011 (1984)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémi Vaillancourt.

Additional information

This work was supported in part by the Vietnam Ministry of Education and Training, the Natural Sciences and Engineering Research Council of Canada and the Centre de recherches mathématiques of the Université de Montréal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen-Ba, T., Nguyen-Thu, H., Giordano, T. et al. Strong-Stability-Preserving 7-Stage Hermite–Birkhoff Time-Discretization Methods. J Sci Comput 50, 63–90 (2012). https://doi.org/10.1007/s10915-011-9473-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9473-7

Keywords

Navigation