Skip to main content
Log in

Well-conditioned Orthonormal Hierarchical \(\mathcal{L}_{2}\) Bases on ℝn Simplicial Elements

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We construct well-conditioned orthonormal hierarchical bases for simplicial \(\mathcal{L}_{2}\) finite elements. The construction is made possible via classical orthogonal polynomials of several variables. The basis functions are orthonormal over the reference simplicial elements in two and three dimensions. The mass matrices M are identity while the conditioning of the stiffness matrices S grows as \(\mathcal{O}(p^{3})\) with respect to the order p. The diagonally normalized stiffness matrices are well conditioned. The diagonally normalized composite matrices ζM+S are also well conditioned for a wide range of ζ. For the mass, stiffness and composite matrices, the bases in this study have much better conditioning than existing high-order hierarchical bases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adjerid, S., Aiffa, M., Flaherty, J.E.: Hierarchical finite element bases for triangular and tetrahedral elements. Comput. Methods Appl. Mech. Eng. 190, 2925–2941 (2001)

    Article  MATH  Google Scholar 

  2. Ainsworth, M., Coyle, J.: Hierarchic hp-edge element families for Maxwell’s equations on hybrid quadrilateral/triangular meshes. Comput. Methods Appl. Mech. Eng. 190, 6709–6733 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ainsworth, M., Coyle, J.: Conditioning of hierarchic p-version Nédélec elements on meshes of curvilinear quadrilaterals and hexahedra. SIAM J. Numer. Anal. 41, 731–750 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ainsworth, M., Coyle, J.: Hierarchic finite element bases on unstructured tetrahedral meshes. Int. J. Numer. Methods Eng. 58, 2103–2130 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ayuso de Dios, B., Zikatanov, L.: Uniformly convergent iterative methods for discontinuous Galerkin discretizations. J. Sci. Comput. 40, 4–36 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brenner, S.C., Gudi, T., Sung, L.-Y.: A posteriori error control for a weakly over-penalized symmetric interior penalty method. J. Sci. Comput. 40, 37–50 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Carnevali, P., Morris, R.B., Tsuji, Y., Taylor, G.: New basis functions and computational procedures for p-version finite element analysis. Int. J. Numer. Methods Eng. 36, 3759–3779 (1993)

    Article  MATH  Google Scholar 

  8. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications, vol. 4. North-Holland, New York (1978)

    Book  MATH  Google Scholar 

  9. Cockburn, B., Li, F., Shu, C.-W.: Locally divergence-free discontinuous Galerkin methods for the Maxwell equations. J. Comput. Phys. 194, 588–610 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cockburn, B., Shu, C.-W.: The Runge-Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dubiner, M.: Spectral methods on triangles and other domains. J. Sci. Comput. 6, 345–390 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dunkl, C.F., Xu, Y.: Orthogonal Polynomials of Several Variables. Encyclopedia of Mathematics and Its Applications, vol. 81. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  14. Hu, N., Guo, X.-Z., Katz, I.N.: Bounds for eigenvalues and condition numbers in the p-version of the finite element method. Math. Comput. 67, 1423–1450 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kellogg, O.D.: Foundations of Potential Theory. Die Grundlehren der Mathematischen Wissenschaften, vol. 31. Springer, New York (1967). Reprint from the first edition of 1929

    MATH  Google Scholar 

  16. Koornwinder, T.: Two-variable analogues of the classical orthogonal polynomials. In: Askey, R.A. (ed.) Theory and Application of Special Functions, Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975, pp. 435–495. Academic Press, New York (1975)

    Google Scholar 

  17. Lasaint, P., Raviart, P.-A.: On a finite element method for solving the neutron transport equation. In: de Boor, C. (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 89–145. Academic Press, New York (1974)

    Google Scholar 

  18. Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics. Die Grundlehren der mathematischen Wissenschaften, vol. 52. Springer, New York (1966). Third enlarged edition

    MATH  Google Scholar 

  19. Reed, W., Hill, T.: Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973)

  20. Remacle, J.-F., Flaherty, J.E., Shephard, M.S.: An adaptive discontinuous Galerkin technique with an orthogonal basis applied to compressible flow problems. SIAM Rev. 45, 53–72 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Schöberl, J., Zaglmayr, S.: High order Nédélec elements with local complete sequence properties. Compel 24, 374–384 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Webb, J.P.: Hierarchal vector basis functions of arbitrary order for triangular and tetrahedral finite elements. IEEE Trans. Antennas Propag. 47, 1244–1253 (1999)

    Article  MATH  Google Scholar 

  23. Xin, J., Cai, W.: A well-conditioned hierarchical basis for triangular \(\mathcal{H}(\mathbf{curl})\)-conforming elements. Commun. Comput. Phys. 9, 780–806 (2011)

    MathSciNet  Google Scholar 

  24. Xin, J., Pinchedez, K., Flaherty, J.E.: Implementation of hierarchical bases in FEMLAB for simplicial elements. ACM Trans. Math. Softw. 31, 187–200 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xin, J., Cai, W. Well-conditioned Orthonormal Hierarchical \(\mathcal{L}_{2}\) Bases on ℝn Simplicial Elements. J Sci Comput 50, 446–461 (2012). https://doi.org/10.1007/s10915-011-9491-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9491-5

Keywords

Navigation