Skip to main content
Log in

Numerical Study of the Nonlinear Combined Sine-Cosine-Gordon Equation with the Lattice Boltzmann Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a lattice Boltzmann model is developed for solving the combined sine-cosine-Gordon equation through selecting equilibrium distribution function properly. With the Chapman-Enskog expansion, the governing evolution equation is recovered correctly from the continuous Boltzmann equation. Some problems, which have exact solutions, are validated by the present model. From the simulations, we find that the numerical results agree well with the exact solutions or better than the numerical solutions reported in previous studies. The study indicates that the present method is very effective and accurate. The present model can be used to solve more other nonlinear wave problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  2. Debnath, L.: Nonlinear Partial Differential Equations for Scientist and Engineers, 2nd edn. Birkhäuser, Boston (2005)

    Google Scholar 

  3. Doolen, G.D.: Lattice gas methods for PDE’s: Theory, application, and hardware. Physica D 47 (1991)

  4. Aidun, C.K., Clausen, J.R.: Lattice-Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 42, 439–472 (2010)

    MathSciNet  Google Scholar 

  5. Benzi, R., Succi, S., Vergassola, M.: The lattice Boltzmann equation: Theory and applications. Phys. Rep. 222, 145–197 (1992)

    Google Scholar 

  6. Chen, S.Y., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998)

    MathSciNet  Google Scholar 

  7. Guo, Z.L., Zheng, C.G., Shi, B.C.: Thermal lattice Boltzmann equation for low Mach number flows: Decoupling model. Phys. Rev. E 75, 036704 (2007)

    Google Scholar 

  8. Stratford, K., Pagonabarraga, I.: Parallel simulation of particle suspensions with the lattice Boltzmann method. Comput. Math. Appl. 55, 1585–1593 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Guo, Z.L., Zhao, T.S.: Lattice Boltzmann model for incompressible flows through porous media. Phys. Rev. E 66, 036304 (2002)

    Google Scholar 

  10. Li, Q., He, Y.L., Tang, G.H., Tao, W.Q.: Improved axisymmetric lattice Boltzmann scheme. Phys. Rev. E 81, 056707 (2010)

    Google Scholar 

  11. Wang, Y., He, Y.L., Li, Q., Tang, G.H.: Numerical simulations of gas resonant oscillations in a closed tube using lattice Boltzmann method. Int. J. Heat Mass Transf. 51, 3082–3090 (2008)

    MATH  Google Scholar 

  12. Li, Q., He, Y.L., Wang, Y., Tang, G.H.: Three-dimensional non-free-parameter lattice-Boltzmann model and its application to inviscid compressible flows. Phys. Lett. A 373, 2101–2108 (2009)

    MATH  Google Scholar 

  13. Wazwaz, A.M.: Travelling wave solutions for combined and double combined sine-cosine-Gordon equations by the variable separated ODE method. Appl. Math. Comput. 177, 755–760 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Fabian, A.L., Kohl, R., Biswas, A.: Perturbation of topological solitons due to sine-Gordon equation and its type. Commun. Nonlinear Sci. Numer. Simul. 14, 1227–1244 (2009)

    MathSciNet  MATH  Google Scholar 

  15. Perring, J.K., Skyrme, T.H.R.: A model unified field equation. Nucl. Phys. 31, 550–555 (1962)

    MathSciNet  MATH  Google Scholar 

  16. Wazwaz, A.M.: The tanh method: exact solutions of the sine-Gordon and the sinh-Gordon equations. Appl. Math. Comput. 167, 1196–1210 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Bratsos, A.G., Twizell, E.H.: The solution of the sine-Gordon equation using the method of lines. Int. J. Comput. Math. 61, 271–292 (1996)

    MathSciNet  MATH  Google Scholar 

  18. Ablowitz, M.J., Herbst, B.M., Schober, C.M.: On the numerical solution of the sine-Gordon equation. J. Comput. Phys. 131, 354–367 (1996)

    MathSciNet  Google Scholar 

  19. Sari, M., Gürarslan, G.: A sixth-order compact finite difference method for the one-dimensional sine-Gordon equation. Int. J. Numer. Methods Biomed. Eng. 27, 1126–1138 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Mohebbi, A., Dehghan, M.: High-order solution of one-dimensional sine-Gordon equation using compact finite difference and DIRKN methods. Math. Comput. Model. 51, 537–549 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Bratsos, A.G.: A numerical method for the one-dimensional sine-Gordon equation. Numer. Methods Partial Differ. Equ. 24, 833–844 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Khaliq, A.Q.M., Abukhodair, B., Sheng, Q., Ismail, M.S.: A predictor-corrector scheme for the sine-Gordon equation. Numer. Methods Partial Differ. Equ. 16, 133–146 (2000)

    MathSciNet  MATH  Google Scholar 

  23. Ma, L.M., Wu, Z.M.: A numerical method for one-dimensional nonlinear sine-Gordon equation using multiquadric quasi-interpolation. Chin. Phys. B 18, 3099–3103 (2009)

    Google Scholar 

  24. Batiha, B., Noorani, M.S.M., Hashim, I.: Numerical solution of sine-Gordon equation by variational iteration method. Phys. Lett. A 370, 437–440 (2007)

    MathSciNet  MATH  Google Scholar 

  25. Dehghan, M., Mirzaei, D.: The boundary integral equation approach for numerical solution of the one-dimensional sine-Gordon equation. Numer. Methods Partial Differ. Equ. 24, 1405–1415 (2008)

    MathSciNet  MATH  Google Scholar 

  26. Shi, B.C., Guo, Z.L.: Lattice Boltzmann model for nonlinear convection-diffusion equations. Phys. Rev. E 79, 016701 (2009)

    Google Scholar 

  27. Ma, C.F.: Lattice BGK simulations of double diffusive natural convection in a rectangular enclosure in the presences of magnetic field and heat source. Nonlinear Anal., Real World Appl. 10, 2666–2678 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Liu, F., Shi, W.P.: Numerical solutions of two-dimensional Burgers’ equations by lattice Boltzmann method. Commun. Nonlinear Sci. Numer. Simul. 16, 150–157 (2011)

    MathSciNet  MATH  Google Scholar 

  29. Ma, C.F.: A new lattice Boltzmann model for KdV-Burgers equation. Chin. Phys. Lett. 22, 2313–2315 (2005)

    Google Scholar 

  30. Chai, Z.H., Shi, B.C.: A novel lattice Boltzmann model for the Poisson equation. Appl. Math. Model. 32, 2050–2058 (2008)

    MathSciNet  MATH  Google Scholar 

  31. Yan, G.W.: A lattice Boltzmann equation for waves. J. Comput. Phys. 161, 61–69 (2000)

    MathSciNet  MATH  Google Scholar 

  32. Zhang, J.Y., Yan, G.W., Shi, X.B.: Lattice Boltzmann model for wave propagation. Phys. Rev. E 80, 026706 (2009)

    Google Scholar 

  33. Lai, H.L., Ma, C.F.: Lattice Boltzmann model for generalized nonlinear wave equations. Phys. Rev. E 84, 046708 (2011)

    Google Scholar 

  34. Wu, F.F., Shi, W.P., Liu, F.: A lattice Boltzmann model for the Fokker-Planck equation. Commun. Nonlinear Sci. Numer. Simul. 17, 2776–2790 (2012)

    MathSciNet  MATH  Google Scholar 

  35. Lai, H.L., Ma, C.F.: Lattice Boltzmann method for the generalized Kuramoto-Sivashinsky equation. Physica A 388, 1405–1412 (2009)

    MathSciNet  Google Scholar 

  36. Lai, H.L., Ma, C.F.: The lattice Boltzmann model for the second-order Benjamin-Ono equations. J. Stat. Mech. P04011 (2010)

  37. Succi, S., Benzi, R.: Lattice Boltzmann equation for quantum mechanics. Physica D 69, 327–332 (1993)

    MathSciNet  MATH  Google Scholar 

  38. Meyer, D.A.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85, 551–574 (1996)

    MATH  Google Scholar 

  39. Boghosian, B.M., Taylor, W. IV: Quantum lattice-gas model for the many-particle Schrödinger equation in d dimensions. Phys. Rev. E 57, 54–66 (1998)

    MathSciNet  Google Scholar 

  40. Yepez, J., Boghosian, B.: An efficient and accurate quantum lattice-gas model for the many-body Schrödinger wave equation. Comput. Phys. Commun. 146, 280–294 (2002)

    MathSciNet  MATH  Google Scholar 

  41. Yepez, J., Vahala, G., Vahala, L.: Lattice quantum algorithm for the Schrödinger wave equation in 2+1 dimensions with a demonstration by modeling soliton instabilities. Quantum Inf. Process. 4, 457–469 (2005)

    Google Scholar 

  42. Palpacelli, S., Succi, S.: Quantum lattice Boltzmann simulation of expanding Bose-Einstein condensates in random potentials. Phys. Rev. E 77, 066708 (2008)

    Google Scholar 

  43. Palpacelli, S., Succi, S.: The quantum lattice Boltzmann equation: Recent developments. Commun. Comput. Phys. 4, 980–1007 (2008)

    Google Scholar 

  44. Dellar, P.J., Lapitski, D., Palpacelli, S., Succi, S.: Isotropy of three-dimensional quantum lattice Boltzmann schemes. Phys. Rev. E 83, 046706 (2011)

    Google Scholar 

  45. Lapitski, D., Dellar, P.J.: Convergence of a three-dimensional quantum lattice Boltzmann scheme towards solutions of the Dirac equation. Philos. Trans. R. Soc. A 369, 2155–2163 (2011)

    MathSciNet  MATH  Google Scholar 

  46. Shi, B.C., Guo, Z.L.: Lattice Boltzmann model for the one-dimensional nonlinear Dirac equation. Phys. Rev. E 79, 066704 (2009)

    MathSciNet  Google Scholar 

  47. Yan, G.W., Dong, Y.F., Hao, Y., Wang, W.M.: A numerical method for the sine-Gordon equation based the lattice Boltzmann model. J. Nonlinear Dyn. Sci. Technol. 11, 31–35 (2004) (in Chinese)

    Google Scholar 

  48. Wang, R.M., Wu, L., Zhang, J.F.: Lattice Boltzmann method for sine-Gordon equation. J. Hydrodyn. A 21, 439–443 (2006) (in Chinese)

    Google Scholar 

  49. Lai, H.L., Ma, C.F.: An implicit scheme of lattice Boltzmann method for Sine-Gordon equation. Chin. Phys. Lett. 25, 2118–2120 (2008)

    Google Scholar 

  50. Banda, M.K., Yong, W.A., Klar, A.: A stability notion for lattice Boltzmann equations. SIAM J. Sci. Comput. 27, 2098–2111 (2006)

    MathSciNet  MATH  Google Scholar 

  51. Guo, Z.L., Zheng, C.G., Shi, B.C.: Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method. Chin. Phys. 11, 366–374 (2002)

    Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the anonymous reviewers for their valuable comments and suggestions, which are very helpful for revising the paper. Also, One of the authors (Huilin Lai) warmly thanks Dr. Qing Li (University of Southampton), Dr. Jie Liao (East China University of Science and Technology), and Dr. Yanbiao Gan (Institute of Applied Physics and Computational Mathematics) for their helpful discussions, suggestions, and encouragements during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changfeng Ma.

Additional information

The project is supported by National Natural Science Foundation of China (Grant No. 10831005, 11071041).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, H., Ma, C. Numerical Study of the Nonlinear Combined Sine-Cosine-Gordon Equation with the Lattice Boltzmann Method. J Sci Comput 53, 569–585 (2012). https://doi.org/10.1007/s10915-012-9587-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-012-9587-6

Keywords

Navigation