Skip to main content
Log in

Space-time Generalized Riemann Problem Solvers of Order k for Linear Advection with Unrestricted Time Step

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This work concerns high-order approximations of the linear advection equation in very long time. A GRP-type scheme of arbitrary high-order in space and time with no restriction on the time step is developed. In the usual GRP solvers, we consider a polynomial approximation of the solution in space in each cell at the initial time. Here, we add a second polynomial approximation of the solution in time in each interface. Thanks to this double approximation, the resulting scheme is compact. It is proved to be of order k+1 in space and time, where k is the degree of the polynomials. Thanks to the compactness of the scheme, a two-dimensional extension is detailed on unstructured meshes made of triangles. Several numerical test-cases and comparison with existing methods illustrate the excellent behaviour of the scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Abgrall, R., Mezine, M.: Construction of second order accurate monotone and stable residual distribution schemes for unsteady flow problems. J. Comput. Phys. 188, 16–55 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abgrall, R., Deconinck, H., Ricchiuto, M., Villedieu, N.: On uniformly high-order accurate residual distribution schemes for advection-diffusion. J. Comput. Appl. Math. 215(2), 547–556 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abgrall, R., Larat, A., Ricchiuto, M., Tavé, C.: A simple construction of very high order non oscillatory compact schemes on unstructured meshes. Comput. Fluids 38(7), 1314–1323 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ben-Artzi, M., Birman, A.: Application of the generalized Riemann problem method to 1-D compressible flows with material interfaces. J. Comput. Phys. 65(1), 170–178 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ben-Artzi, M., Falcovitz, J.: Recent developments of the GRP method. JSME Int. J. Ser. B Fluids Therm. Eng. 38(4), 497–517 (1995)

    Article  Google Scholar 

  6. Ben-Artzi, M., Falcovitz, J.: Generalized Riemann Problems in Computational Fluid Dynamics. Cambridge Monographs on Applied and Computational Mathematics. (2003)

    Book  MATH  Google Scholar 

  7. Ben-Artzi, M., Li, J., Warnecke, G.: A direct Eulerian GRP scheme for compressible fluid flows. J. Comput. Phys. 218, 19–43 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Berthon, C., Turpault, R.: Asymptotic preserving HLL schemes. Numer. Methods Partial Differ. Equ. 27(6), 1396–1422 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chalons, C., Coquel, F., Godlewski, E., Raviart, P.A., Seguin, N.: Godunov-type schemes for hyperbolic systems with parameter dependent source. The case of Euler system with friction. Math. Models Methods Appl. Sci. 20(11), 2109 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chandrasekhar, S.: Radiative Transfer. Dover, New York (1950)

    MATH  Google Scholar 

  11. Cockburn, B., Shu, C.W.: TVD Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws II: general framework. Math. Comput. 52, 411 (1989)

    MathSciNet  MATH  Google Scholar 

  12. Cockburn, B., Shu, C.W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dai, W.W., Woodward, P.R.: Moment preserving schemes for Euler equations. Comput. Fluids 46, 186–196 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Davidson, B.: Neutron Transport Theory. Clarendon, Oxford (1957)

    Google Scholar 

  15. Degond, P., Pareschi, L., Russo, G.: Modeling and Computational Methods for Kinetic Equations. Birkhäuser, Basel (2004)

    Book  MATH  Google Scholar 

  16. Dumbser, M., Käser, M.: Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems. J. Comput. Phys. 221(2), 693–723 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dumbser, M., Munz, C.D.: Arbitrary high-order discontinuous Galerkin schemes. In: Numerical Methods for Hyperbolic and Kinetic Problems, pp. 295–333 (2005)

    Chapter  Google Scholar 

  18. Dumbser, M., Zanotti, O.: Very high order PNPM schemes on unstructured meshes for the resistive relativistic MHD equations. J. Comput. Phys. 228(18), 6991–7006 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dumbser, M., Balsara, D., Munz, C.D., Toro, E.F.: A unified framework for the construction of one-step finite-volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys. 227(18), 8209–8253 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dumbser, M., Enaux, C., Toro, E.F.: Finite volume schemes of very high order of accuracy for Stiff hyperbolic balance laws. J. Comput. Phys. 227(8), 3971–4001 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Filbet, F., Jin, S.: An asymptotic preserving scheme for the ES-BGK model of the Boltzmann equation. J. Sci. Comput. 46, 204–224 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Frénod, E., Salvarani, F., Sonnendrücker, E.: Long time simulation of a beam in a periodic focusing channel via a two-scale PIC-method. Math. Models Methods Appl. Sci. 19(2), 175–197 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gassner, G., Dumbser, M., Hindenlang, F., Munz, C.D.: Explicit one-step time discretizations for discontinuous Galerkin and finite volume schemes based on local predictors. J. Comput. Phys. 230, 4232–4247 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Glassey, R.T.: The Cauchy Problem in Kinetic Theory. SIAM, Philadelphia (1996)

    Book  MATH  Google Scholar 

  25. Glimm, J., Marshall, G., Plohr, B.: A generalized Riemann problem for quasi-one-dimensional gas flows. Adv. Appl. Math. 5(1), 1–30 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gosse, L., Toscani, G.: Asymptotic-preserving & well-balanced schemes for radiative transfer and the Rosseland approximation. Numer. Math. 98, 223–250 (2003)

    Article  MathSciNet  Google Scholar 

  27. Gottlieb, S., Shu, C.W.: Total variation diminishing Runge-Kutta schemes. Math. Comput. 67, 73–85 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high-order accurate essentially non-oscillatory schemes, III. J. Comput. Phys. 71(2), 231–303 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  29. Helffer, B., Nier, F.: Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians. Springer, Berlin (2005)

    MATH  Google Scholar 

  30. Hoteit, H., Ackerer, P., Mosé, R., Erhel, J., Philippe, B.: New two-dimensional slope limiters for discontinuous Galerkin methods on arbitrary meshes. Int. J. Numer. Methods Eng. 61(14), 2566–2593 (2004)

    Article  MATH  Google Scholar 

  31. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jin, S.: Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21, 441–454 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. Klaij, C., van der Vegt, J.J.W., van der Ven, H.: Space-time discontinuous Galerkin method for the compressible Navier-Stokes equations. J. Comput. Phys. 217, 589–611 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lemou, M., Mieussens, L.: Time implicit schemes and fast approximations of the Fokker-Planck-Landau equation. SIAM J. Sci. Comput. 27(3), 809–830 (2007)

    Article  MathSciNet  Google Scholar 

  35. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  36. Liu, T.P., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lörcher, F., Gassner, G., Munz, C.D.: A discontinuous Galerkin scheme based on a space-time expansion. I. Inviscid compressible flow in one space dimension. J. Sci. Comput. 32(2), 175–199 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lowrie, R.B., Roe, P.L., Van Leer, B.: A space-time discontinuous Galerkin method for the time accurate numerical solution of hyperbolic conservation laws. In: Proceedings of 12th AIAA CFD Conference, pp. 95–1658 (1995)

    Google Scholar 

  39. Mihalas, D., Weibel-Mihalas, B.: Foundations of Radiation Hydrodynamics. Dover, New York (1999)

    Google Scholar 

  40. Pomraning, G.C.: The Equations of Radiation Hydrodynamics. Pergamon, Elmsford (1973)

    Google Scholar 

  41. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Introduction. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  42. van der Vegt, J.J.W., van der Ven, H.: Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows I. General formulation. J. Comput. Phys. 182, 546–585 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolphe Turpault.

Appendix

Appendix

Evolution Step

Case two targets (explicit):

  1. We know the solution \(u_{i}^{n}(x,y)\) in the cell T i at time t n and the solution \(v_{j3}^{n+\frac{1}{2}}(t,\omega)\) on the interface \(I_{j3}^{n+\frac{1}{2}}\) .

  2. We define θ 1 as the intersection between the characteristic line coming from \(s_{j3}^{n}\) and the segment \(s_{j1}^{n+1}\). We also define θ 2, the intersection between the characteristic line coming from \(s_{j3}^{n}\) and the segment \(s_{j2}^{n+1}\). Then we call M 1 the projection of θ 1 on \(s_{j1}^{n}\) and M 2 the projection of θ 2 on \(s_{j2}^{n}\) (see Fig. 21).

    Fig. 21
    figure 21

    Incoming solutions on the interface (left) and on the cell (right) for the explicit case two targets

  3. The exact solution on the cell T i at time t n+1 is:

    with:

  4. The exact solution on the interface \(I_{j1}^{n+\frac{1}{2}}\) is:

    with:

  5. The exact solution on the interface \(I_{j2}^{n+\frac{1}{2}}\) is:

    with:

Case one target (explicit):

  1. We know the solution \(u_{i}^{n}(x,y)\) in the cell T i at time t n and the solutions \(v_{j1}^{n+\frac{1}{2}}(t,\omega)\) and \(v_{j2}^{n+\frac{1}{2}}(t,\omega)\) on the interfaces I j1 and \(I_{j2}^{n+\frac{1}{2}}\).

  2. We define θ 1 as the intersection between the characteristic line coming from the segment \(s_{j1}^{n}\) and the segment \(s_{j3}^{n+1}\) (i.e. such that \(d(s_{j3}^{n},s_{j1}^{n}) = a \Delta t\)). We also define θ 2 as the intersection between the characteristic line coming from the segment \(s_{j2}^{n}\) and the segment \(s_{j3}^{n+1}\) (i.e. such that \(d(s_{j3}^{n},s_{j2}^{n}) = a \Delta t\)). Then we call M 1 the projection of θ 1 on \(s_{j3}^{n}\) and M 2 the projection of θ 2 on \(s_{j3}^{n}\) (see Fig. 22).

    Fig. 22
    figure 22

    Incoming solutions on the interface (left) and on the cell (right) for the explicit case 1

  3. The exact solution on the cell T i at time t n+1 is:

    with:

  4. The exact solution on the interface \(I_{j3}^{n+\frac{1}{2}}\) is:

    with:

Case two targets (implicit):

  1. We know the solution \(u_{i}^{n}(x,y)\) in the cell T i at time t n and the solution \(v_{j3}^{n+\frac{1}{2}}(t,\omega)\) on the interface \(I_{j3}^{n+\frac{1}{2}}\) .

  2. We define θ 3 as the intersection between the characteristic line coming from \(s_{j3}^{n}\) and the segment [t n,t n+1] for (x,y)=(x j3,y j3) (see Fig. 23).

    Fig. 23
    figure 23

    Incoming solutions on the interface (left) and on the cell (right) for the implicit case 2

  3. The exact solution on the cell T i at time t n+1 is:

    with:

  4. The exact solution on the interface \(I_{j1}^{n+\frac{1}{2}}\) is:

    with:

  5. The exact solution on the interface \(I_{j2}^{n+\frac{1}{2}}\) is:

    with:

Projection Step

The exact solutions are respectively projected onto the spaces \(\mathbb {P}^{k}_{C}\) and \(\mathbb {P}^{k}_{I}\): in the cell T i at time t n+1, the exact solution is projected in \(\mathbb {P}^{k}_{C}\), and on the interfaces \(I_{j}^{n+\frac{1}{2}}\), the solution is projected in \(\mathbb {P}^{k}_{I}\). For the case n1 explicit, this leads to the two minimization problems:

(20)
(21)

for the case n2 explicit, it leads to the three minimization problems:

(22)
(23)
(24)

and for the case explicit two targets, it also leads to three minimization problems:

(25)
(26)
(27)

Thanks to the Petrov-Galerkin conditions, we can rewrite (20), (21) as:

(28)
(29)

and (22)–(24) as:

(30)
(31)
(32)

Using the decomposition of the solutions in their corresponding basis:

the minimization problems (28), (29) are equivalent to solving the two following linear systems of size \(\frac{(k+1)(k+2)}{2}\):

and (30)–(32) are equivalent to solving three linear systems of size \(\frac{(k+1)(k+2)}{2}\):

The matrices are the same that in the case n1 implicit and the case n2 explicit. For the right hand sides, we have first for the case n1 explicit:

then for the case n2 implicit:

and for the case explicit two targets:

where the coefficients are given by:

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berthon, C., Sarazin, C. & Turpault, R. Space-time Generalized Riemann Problem Solvers of Order k for Linear Advection with Unrestricted Time Step. J Sci Comput 55, 268–308 (2013). https://doi.org/10.1007/s10915-012-9632-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-012-9632-5

Keywords

Navigation