Skip to main content
Log in

An Adaptive P 1 Finite Element Method for Two-Dimensional Maxwell’s Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Recently a new numerical approach for two-dimensional Maxwell’s equations based on the Hodge decomposition for divergence-free vector fields was introduced by Brenner et al. In this paper we present an adaptive P 1 finite element method for two-dimensional Maxwell’s equations that is based on this new approach. The reliability and efficiency of a posteriori error estimators based on the residual and the dual weighted-residual are verified numerically. The performance of the new approach is shown to be competitive with the lowest order edge element of Nédélec’s first family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Pure and Applied Mathematics. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  2. Bangerth, W., Rannacher, R.: Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel (2003)

    MATH  Google Scholar 

  3. Beck, R., Hiptmair, R., Hoppe, R.H.W., Wohlmuth, B.: Residual based a posteriori error estimators for eddy current computation. Modél. Math. Anal. Numér. 34, 159–182 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Becker, R., Rannacher, R.: A feed-back approach to error control in finite element methods: basic analysis and examples. East-West J. Numer. Math. 4, 237–264 (1996)

    MathSciNet  MATH  Google Scholar 

  5. Braess, D., Schöberl, J.: Equilibrated residual error estimator for edge elements. Math. Comput. 77, 651–672 (2008)

    MATH  Google Scholar 

  6. Brenner, S.C., Carstensen, C.: Finite Element Methods. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics, pp. 73–118. Wiley, Weinheim (2004)

    Google Scholar 

  7. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Texts in Applied Mathematics, vol. 15. Springer, New York (2008)

    Book  MATH  Google Scholar 

  8. Brenner, S.C., Li, F., Sung, L.-Y.: A locally divergence-free nonconforming finite element method for the time-harmonic Maxwell equations. Math. Comput. 76, 573–595 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brenner, S.C., Li, F., Sung, L.-Y.: A locally divergence-free interior penalty method for two-dimensional curl-curl problems. SIAM J. Numer. Anal. 46, 1190–1211 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brenner, S.C., Li, F., Sung, L.-Y.: A nonconforming penalty method for a two-dimensional curl-curl problem. Math. Models Methods Appl. Sci. 19, 651–668 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brenner, S.C., Cui, J., Nan, Z., Sung, L.-Y.: Hodge decomposition for divergence-free vector fields and two-dimensional Maxwell’s equations. Math. Comput. 81, 643–659 (2011)

    MathSciNet  Google Scholar 

  12. Carstensen, C.: Estimation of higher Sobolev norm from lower order approximation. SIAM J. Numer. Anal. 42, 2136–2147 (2005). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  13. Carstensen, C.: A unifying theory of a posteriori finite element error control. Numer. Math. 100, 617–637 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Carstensen, C., Hoppe, R.H.W.: Convergence analysis of an adaptive edge finite element method for the 2D eddy current equations. J. Numer. Math. 13, 19–32 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Carstensen, C., Hoppe, R.H.W.: Unified framework for an a posteriori error analysis of non-standard finite element approximations of H(curl)-elliptic problems. J. Numer. Math. 17, 27–44 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ciarlet, P. Jr.: Augmented formulations for solving Maxwell equations. Comput. Methods Appl. Mech. Eng. 194, 559–586 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  18. Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grisvard, P.: Elliptic Problems in Non Smooth Domains. Pitman, Boston (1985)

    Google Scholar 

  20. Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hoppe, R.H.W., Schöberl, J.: Convergence of adaptive edge element methods for the 3D eddy currents equations. J. Comput. Math. 27, 657–676 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, New York (2003)

    Book  MATH  Google Scholar 

  23. Nédélec, J.-C.: Mixed finite elements in ℝ3. Numer. Math. 35, 315–341 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nochetto, R.H., Veeser, A., Verani, M.: A safeguarded dual weighted residual method. IMA J. Numer. Anal. 29, 126–140 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schöberl, J.: A posteriori error estimates for Maxwell equations. Math. Comput. 77, 633–649 (2008)

    MATH  Google Scholar 

  26. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Verfürth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley and Teubner, Chichester (1996)

    MATH  Google Scholar 

  28. Wiberg, N.-E., Li, X.D.: Superconvergent patch recovery of finite-element solution and a posteriori L 2 norm error estimate. Commun. Numer. Methods Eng. 10, 313–320 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The bulk of this paper was written while the second author enjoyed the hospitality of the Center for Computation and Technology at Louisiana State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Brenner.

Additional information

This work was supported in part by the National Science Foundation under Grant No. DMS-07-13835 and Grand No. DMS-10-16332. The second author was additionally supported by the DFG Research Center MATHEON “Mathematics for Key Technologies” and the DFG graduate school BMS “Berlin Mathematical School”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brenner, S.C., Gedicke, J. & Sung, LY. An Adaptive P 1 Finite Element Method for Two-Dimensional Maxwell’s Equations. J Sci Comput 55, 738–754 (2013). https://doi.org/10.1007/s10915-012-9658-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-012-9658-8

Keywords

Navigation