Skip to main content
Log in

Positivity-Preserving Well-Balanced Discontinuous Galerkin Methods for the Shallow Water Equations on Unstructured Triangular Meshes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The shallow water equations model flows in rivers and coastal areas and have wide applications in ocean, hydraulic engineering, and atmospheric modeling. In “Xing et al. Adv. Water Resourc. 33: 1476–1493, 2010)”, the authors constructed high order discontinuous Galerkin methods for the shallow water equations which can maintain the still water steady state exactly, and at the same time can preserve the non-negativity of the water height without loss of mass conservation. In this paper, we explore the extension of these methods on unstructured triangular meshes. The simple positivity-preserving limiter is reformulated, and we prove that the resulting scheme guarantees the positivity of the water depth. Extensive numerical examples are provided to verify the positivity-preserving property, well-balanced property, high-order accuracy, and good resolution for smooth and discontinuous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Audusse, E., Bouchut, F., Bristeau, M.-O., Klein, R., Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25, 2050–2065 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bale, D.S., LeVeque, R.J., Mitran, S., Rossmanith, J.A.: A wave propagation method for conservation laws and balance laws with spatially varying flux functions. SIAM J. Sci. Comput. 24, 955–978 (2002)

    Google Scholar 

  3. Bermudez, A., Vazquez, M.E.: Upwind methods for hyperbolic conservation laws with source terms. Comput. Fluids 23, 1049–1071 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berthon, C., Marche, F.: A positive preserving high order VFRoe scheme for shallow water equations: a class of relaxation schemes. SIAM J. Sci. Comput. 30, 2587–2612 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bokhove, O.: Flooding and drying in discontinuous Galerkin finite-element discretizations of shallow-water equations. Part 1: one dimension. J. Sci. Comput. 22, 47–82 (2005)

    Article  MathSciNet  Google Scholar 

  6. Bollermann, A., Noelle, S., Lukácová-Medviová, M.: Finite volume evolution Galerkin methods for the shallow water equations with dry beds. Commun. Comput. Phys. 10, 371–404 (2010)

    Google Scholar 

  7. Brufau, P., Vázquez-Cendón, M.E., García-Navarro, P.: A numerical model for the flooding and drying of irregular domains. Int. J. Numer. Methods Fluids 39, 247–275 (2002)

    Article  MATH  Google Scholar 

  8. Bryson, S., Epshteyn, Y., Kurganov, A., Petrova, G.: Well-balanced positivity preserving central-upwind shceme on triangular grids for the Saint-Venant system. ESAIM. Math. Modell. Numer. Anal. 45, 423–446 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bunya, S., Kubatko, E.J., Westerink, J.J., Dawson, C.: A wetting and drying treatment for the Runge-Kutta discontinuous Galerkin solution to the shallow water equations. Comput. Methods Appl. Mech. Eng. 198, 1548–1562 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cockburn, B., Karniadakis, G., Shu, C.-W.: The development of discontinuous galerkin methods. In: B. Cockburn, G. Karniadakis, C.-W. Shu (eds.) Discontinuous Galerkin Methods: Theory, Computation and Applications. Lecture Notes in Computational Science and Engineering, Part I: Overview, vol. 11, pp. 3–50. Springer, Berlin (2000)

  11. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  12. Cockburn, B., Shu, C.-W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dawson, C., Proft, J.: Discontinuous and coupled continuous/discontinuous Galerkin methods for the shallow water equations. Comput. Methods Appl. Mech. Eng. 191, 4721–4746 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ern, A., Piperno, S., Djadel, K.: A well-balanced Runge-Kutta discontinuous Galerkin method for the shallow-water equations with flooding and drying. Int. J. Numer. Methods Fluids 58, 1–25 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Eskilsson, C., Sherwin, S.J.: A triangular spectral/hp discontinuous Galerkin method for modelling 2D shallow water equations. Int. J. Numer. Methods Fluids 45, 605–623 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Feng, J.-H., Cai, L., Xie, W.-X.: CWENO-type central-upwind schemes for multidimensional Saint-Venant system of shallow water equations. Appl. Numer. Math. 56, 1001–1017 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gallardo, J.M., Parés, C., Castro, M.: On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas. J. Comput. Phys. 227, 574–601 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Giraldo, F.X., Hesthaven, J.S., Warburton, T.: Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations. J. Comput. Phys. 181, 499–525 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hubbard, M.E.: On the accuracy of one-dimensional models of steady converging/diverging open channel flows. Int. J. Numer. Methods Fluids 35, 785–808 (2001)

    Article  MATH  Google Scholar 

  20. Kesserwani, G., Liang, Q.: Well-balanced RKDG2 solutions to the shallow water equations over irregular domains with wetting and drying. Comput. Fluids 39, 2040–2050 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kurganov, A., Levy, D.: Central-upwind schemes for the Saint-Venant system. Math. Modell. Numer. Anal. 36, 397–425 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. LeVeque, R.J.: Balancing source terms and flux gradients on high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys. 146, 346–365 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nair, R.D., Thomas, S.J., Loft, R.D.: A discontinuous Galerkin global shallow water model. Mon. Weather Rev. 133, 876–888 (2005)

    Article  Google Scholar 

  24. Niceno, B.: EasyMesh Version 1.4: A Two-Dimensional Quality Mesh Generator. http://www-dinma.univ.trieste.it/nirftc/research/easymesh/ (2001)

  25. Noelle, S., Xing, Y., Shu, C.-W.: High-order well-balanced schemes. In: Russo, G., Puppo, G. (eds.) Numerical Methods for Relaxation Systems and Balance Equations. Seconda Universita di Napoli, Quaderni di Matematica, Italy, Dipartimento di Matematica (2009)

  26. Perthame, B., Simeoni, C.: A kinetic scheme for the Saint-Venant system with a source term. Calcolo 38, 201–231 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rhebergen, S., Bokhove, O., van der Vegt, J.J.W.: Discontinuous galerkin finite element methods for hyperbolic nonconservative partial differential equations. J. Comput. Phys. 227, 1887–1922 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. San, O., Kara, K.: High-order acurate spectral difference method for shallow water equations. Int. J. Res. Rev. Appl. Sci. 6, 41–54 (2011)

    MathSciNet  MATH  Google Scholar 

  29. Schwanenberg, D., Köngeter, J.: A discontinuous Galerkin method for the shallow water equations with source terms. In: B. Cockburn, G. Karniadakis, C.-W. Shu (eds.) Discontinuous Galerkin Methods: Theory, Computation and Applications. Lecture Notes in Computational Science and Engineering, Part I: Overview, vol. 11, pp. 289–309. Springer, Berlin (2000)

  30. Shu, C.-W.: Tvb uniformly high-order schemes for conservation laws. Math. Comput. 49, 105–121 (1987)

    Article  MATH  Google Scholar 

  31. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xing, Y., Shu, C.-W.: High order finite difference WENO schemes with the exact conservation property for the shallow water equations. J. Comput. Phys. 208, 206–227 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Xing, Y., Shu, C.-W.: High order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms. J. Comput. Phys. 214, 567–598 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xing, Y., Shu, C.-W.: A new approach of high order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms. Commun. Comput. Phys. 1, 100–134 (2006)

    MATH  Google Scholar 

  35. Xing, Y., Shu, C.-W.: High-order finite volume WENO schemes for the shallow water equations with dry states. Adv. Water Resourc. 34, 1026–1038 (2011)

    Article  Google Scholar 

  36. Xing, Y., Zhang, X., Shu, C.-W.: Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations. Adv. Water Resourc. 33, 1476–1493 (2010)

    Article  Google Scholar 

  37. Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229, 3091–3120 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, X., Shu, C.-W.: Maximum-principle-satisfying and positivity-preserving high order schemes for conservation laws: survey and new developments. Proc. R. Soc. A 467, 2752–2776 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang, X., Xia, Y., Shu, C.-W.: Maximum-principle-satisfying and positivity-preserving high order discontinuous galerkin schemes for conservation laws on triangular meshes. J. Sci. Comput. 50, 29–62 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Research of the first author is sponsored by the National Science Foundation grant DMS-1216454, ORNL’s Laboratory Directed Research and Development funds, and the U. S. Department of Energy, Office of Advanced Scientific Computing Research. The work was partially performed at ORNL, which is managed by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulong Xing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, Y., Zhang, X. Positivity-Preserving Well-Balanced Discontinuous Galerkin Methods for the Shallow Water Equations on Unstructured Triangular Meshes. J Sci Comput 57, 19–41 (2013). https://doi.org/10.1007/s10915-013-9695-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9695-y

Keywords

Navigation