Skip to main content
Log in

The Nonconvergence of \(h\)-Refinement in Prolate Elements

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Prolate Spheroidal Wave Functions are likely to be a better tool for the design of spectral and pseudo-spectral techniques than the orthogonal polynomials and related functions

— Xiao, Rokhlin and Yarvin (2001), p. 837.

Abstract

Prolate elements are a “plug-compatible” modification of spectral elements in which Legendre polynomials are replaced by prolate spheroidal wave functions of order zero. Prolate functions contain a“bandwidth parameter” \(c \ge 0 \) whose value is crucial to numerical performance; the prolate functions reduce to Legendre polynomials for \(c\,=\,0\). We show that the optimal bandwidth parameter \(c\) not only depends on the number of prolate modes per element \(N\), but also on the element widths \(h\). We prove that prolate elements lack \(h\)-convergence for fixed \(c\) in the sense that the error does not go to zero as the element size \(h\) is made smaller and smaller. Furthermore, the theoretical predictions that Chebyshev and Legendre polynomials require \(\pi \) degrees of freedom per wavelength to resolve sinusoidal functions while prolate series need only 2 degrees of freedom per wavelength are asymptotic limits as \(N \rightarrow \infty \); we investigate the rather different behavior when \(N \sim O(4-10)\) as appropriate for spectral elements and prolate elements. On the other hand, our investigations show that there are certain combinations of \(N,\,h\) and \(c>0\) where a prolate basis clearly outperforms the Legendre polynomial approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adams, N.A., Shariff, K.: A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems. J. Comput. Phys. 127, 27–51 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bender, C.M., Orszag, S.A.: Advanced Mathematical Methods for Scientists and Engineers, p. 594. McGraw-Hill, New York (1978)

    MATH  Google Scholar 

  3. Beylkin, G., Sandberg, K.: Wave propagation using bases for bandlimited functions. Wave Motion 41, 263–291 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boyd, J.P.: Sum-accelerated pseudospectral methods: finite differences and sech-weighted differences. Comput. Methods Appl. Mech. Eng. 116, 1–11 (1994)

    Article  MATH  Google Scholar 

  5. Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd edn, p. 665. Dover, New York (2001)

    MATH  Google Scholar 

  6. Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Appl. Comput. Harmon Anal. 15, 168–176 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boyd, J.P.: Prolate elements: prolate spheroidal wavefunctions as an alternative to Chebyshev and Legendre polynomials for spectral and pseudospectral algorithms. J. Comput. Phys. 199, 688–716 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boyd, J.P.: Computation of grid points, quadrature weights and derivatives for spectral element methods using prolate spheroidal wave functions–prolate elements. ACM Trans. Math. Softw. 31, 149–165 (2005)

    Article  MATH  Google Scholar 

  9. Boyd, J.P., Sadiq, B.A.: A critical comparison of mapped-cosine quasi-uniform spectral schemes (QUSS): the Kosloff/Tal-Ezer transformation, the Jacobian theta function mapping and the pseudoprolate grid. J. Comput. Phys. (2012) (to be submitted)

  10. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral methods: fundamentals in single domain, p. 558. Springer, New York (2006)

    Google Scholar 

  11. Chen, Q., Gottlieb, D., Hesthaven, J.S.: Spectral methods based on prolate spheroidal wave functions for hyperbolic PDEs. SIAM J. Numer. Anal. 43, 1912–1933 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Colonius, T.: Numerically nonreflecting boundary and interface conditions for compressible flow and aeroacoustic computations. AIAA J. 35, 1126–1133 (1997)

    Article  MATH  Google Scholar 

  13. Dunster, T.M.: Uniform asymptotic expansions for prolate spheroidal functions with large parameters. SIAM J. Math. Anal. 17, 1495–1524 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Falloon, P.E., Abbott, P.C., Wang, J.B.: Theory and computation of spheroidal wavefunctions. J. Phys. A-Math. General 36, 5477–5495 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Frieden, B.R.: Evaluation, design and extrapolation methods for optical signals, based on use of the prolate functions. In: Wolf, E. (ed.) Progress in Optics, IX, No. 9 in Progress in Optics, pp. 313–407. North-Holland, Amsterdam (1971)

    Google Scholar 

  16. Gaitonde, D.V., Shang, J.S., Young, J.L.: Practical aspects of higher-order numerical schemes for wave propagation phenomena. Int. J. Numer. Meth. Eng. 45, 1849–1869 (1999)

    Article  MATH  Google Scholar 

  17. Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods, p. 200. SIAM, Philadelphia (1977)

    Book  MATH  Google Scholar 

  18. Gottlieb, D., Shu, C.-W.: On the Gibbs phenomenon and its resolution. SIAM Rev. 39, 644–668 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gray, S.K., Goldfield, E.M.: Dispersion fitted finite difference method with applications to molecular quantum mechanics. J. Chem. Phys. 115, 8331–8344 (2001)

    Article  Google Scholar 

  20. Haras, Z., Ta’asan, S.: Finite difference schemes for long-time integration. J. Comput. Phys. 114, 265–279 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hogan, J.A., Lakey, J.D.: Duration and Bandwidth Limiting: Prolate Functions, Sampling and Applications, p. 275. Birkhauser, Boston (2011)

    Google Scholar 

  22. Holberg, O.: Towards optimum one-way wave-propagation. Geophys. Prospect. 36, 99–114 (1988)

    Article  Google Scholar 

  23. Huang, C.-C.: Improved pseudospectral mode solver by prolate spheroidal wave functions for optical waveguides with step-index. J. Lightwave Tech. 27, 597–605 (2009)

    Article  Google Scholar 

  24. Huang, C.-C.: Semiconductor nanodevice simulation by multidomain spectral method with Chebyshev, prolate spheroidal and Laguerre basis functions. Comput. Phys. Commun. 180, 375–383 (2009)

    Article  MATH  Google Scholar 

  25. Jordan, D.K., Mazziotti, D.A.: Spectral differences in real-space electronic structure calculations. J. Chem. Phys. 120, 574–578 (2004)

    Article  Google Scholar 

  26. Karoui, A.: Uncertainty principles, prolate spheroidal wave functions, and applications. In: Barral, J., Seuret, S. (eds.) Recent Developments in Fractals and Related Fields, pp. 165–190. Springer, Heidelberg, Germany (2010)

  27. Karoui, A.: Unidimensional and bidimensional prolate spheroidal wave functions and applications. J. Frankl. Instit. 378, 1668–1694 (2011)

    Article  MathSciNet  Google Scholar 

  28. Karoui, A., Mehrzi, I.: Asymptotic behaviors and numerical computations of the eigenfunctions and eigenvalues associated with the classical and circular prolate spheroidal wave functions. Appl. Math. Comput. 218, 10871–10888 (2012)

    Article  MathSciNet  Google Scholar 

  29. Kong, W.Y., Rokhlin, V.: A new class of highly accurate differentiation schemes based on the prolate spheroidal wave functions. Appl. Comput. Harmon. Anal. 33, 226–260 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kosloff, R., Tal-Ezer, H.: A modified Chebyshev pseudospectral method with an O(1/ N) time step restriction. J. Comput. Phys. 104, 457–469 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kovvali, N., Lin, W., Carin, L.: Pseudospectral method based on prolate spheroidal wave functions for frequency-domain electromagnetic simulations. IEEE Trans. Antennas Propag. 53, 3990–4000 (2005)

    Article  Google Scholar 

  32. Kovvali, N., Lin, W., Carin, L.: Hybrid prolate pseudospectral methods on chebyshev and legendre grids i—a preview. Discret. Comput. Math., 121–137 (2006)

  33. Kovvali, N., Lin, W., Zhao, Z., Couchman, L., Carin, L.: Rapid prolate pseudospectral differentiation and interpolation with the fast multipole method. SIAM J. Sci. Comput. 28, 485–497 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Landau, H.J., Widom, H.: Eigenvalue distribution of time and frequency limiting. J. Math. Anal. Appl. 77, 469–481 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, K., Huang, Q., Wang, J., Lin, L.: An improved localized radial basis function meshless method for computational aeroacoustics. Eng. Anal. Boundary Elem. 35, 47–55 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lin, W., Kovvali, N., Carin, L.: Pseudospectral method based on prolate spheroidal wave functions for semiconductor nanodevice simulation. Comput. Phys. Commun. 175, 78–85 (2006)

    Article  MATH  Google Scholar 

  37. Liu, Y.: Fourier analysis of numerical algorithms for the Maxwell equations. J. Comput. Phys. 124, 396–416 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lockard, D.P., Brentner, K.S., Atkins, H.L.: High-accuracy algorithms for computational aeroacoustics. AIAA J. 33, 246–251 (1995)

    Article  MATH  Google Scholar 

  39. Miles, J.W.: Asymptotic approximations for prolate spheroidal wave functions. Stud. Appl. Math. 54, 315–349 (1975)

    MathSciNet  MATH  Google Scholar 

  40. Moore, I.C., Cada, M.: Prolate spheroidal wave functions, an introduction to the slepian series and its properties. Appl. Comput. Harmon. Anal. 16, 208–230 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, New York (2010)

    MATH  Google Scholar 

  42. Orlin, P.A., Perkins, A.L., Heburn, G.: A frequency accurate spatial derivative finite difference approximation. Numer. Meths. Partial Diff. Eqs. 15, 569–589 (1997)

    Article  Google Scholar 

  43. S. A. Orszag and M. Israeli: Numerical simulation of incompressible flow. Ann. Revs. Fluid Mech. 6, 281–318 (1974) (Review)

    Google Scholar 

  44. Rokhlin, V., Xiao, H.: Approximate formulae for certain prolate spheroidal wave functions valid for large values of both order and band-limit. Appl. Comput. Harmon. Anal. 22, 105–123 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sandberg, K., Wojciechowski, K.J.: The EPS method: a new method for constructing pseudospectral derivative operators. J. Comput. Phys. 230, 5836–5863 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. Shen, X., Walker, G.G.: Construction of periodic prolate spheroidal wavelets using interpolation. Numer. Funct. Anal. Optim. 28, 445–466 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. Shkolnisky, Y., Tygert, M., Rokhlin, V.: Approximation of bandlimited functions. Appl. Comput. Harmon. Anal. 21, 413–420 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. Slepian, D.: Some comments on Fourier analysis, uncertainty and modeling. SIAM Rev. 379–393 (1983)

  49. Tam, C.K.W., Li, Y.: Wavenumber-extended high-order upwind-biased finite-difference schems for computational acoustics. J. Comput. Acoust. 133, 235–255 (1997)

    Google Scholar 

  50. Tam, C.K.W., Webb, J.C.: Dispersion-relation-preserving finite difference schems for computational acoustics. J. Comput. Phys. 107, 262–283 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  51. Vanel, F.O., Baysal, O.: Investigation of dispersion-relation-preserving scheme and spectral analysis methods for acoustic waves. J. Vib. Sound Trans. ASME 119, 250–257 (1997)

    Article  Google Scholar 

  52. Walter, G.: Prolate spheroidal wavelets: translation, convolution, and differentiation made easy. J. Fourier Anal. Appl. 11, 73–84 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  53. Walter, G., Shen, X.: Wavelets based on prolate spheroidal wave functions. J. Fourier Anal. Appl. 10, 1–26 (2005)

    Article  MathSciNet  Google Scholar 

  54. Walter, G., Soleski, T.: A new friendly method of computing prolate spheroidal wave functions and wavelets. Appl. Comput. Harmon. Anal. 19, 432–443 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  55. Wang, L.-L.: Analysis of spectral approximations using prolate spheroidal wave functions. Math. Comput. 79, 807–827 (2010)

    Article  MATH  Google Scholar 

  56. Wang, L.-L., Zhang, J.: An improved estimate of PSWF approximation and approximation by Mathieu functions. J. Math. Anal. Appl. 379, 35–47 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  57. Wesseling, P.: Consruction of accurate difference schemes for hyperbolic partial differential equations. J. Eng. Math. 7, 19–31 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  58. Xiao, H., Rokhlin, V.: High-frequency asymptotic expansions for certain prolate spheroidal wave functions. J. Fourier Anal. Appl. 9, 577–598 (2003)

    Article  MathSciNet  Google Scholar 

  59. Xiao, H., Rokhlin, V.: Approximate formulae for certain prolate spheroidal wave functions valid for large values of both order and band-limit. Appl. Comput. Harmon. Anal. 22, 105–123 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  60. Xiao, H., Rokhlin, V., Yarvin, N.: Prolate spheroidal wavefunctions, quadrature and interpolation. Inverse Probl. 17, 805–838 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  61. Zhang, J., Wang, L.-L., Rong, Z.: A prolate-element method for nonlinear PDEs on the sphere. J. Sci. Comput. 47, 73–92 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  62. Zingg, D.W.: Comparison of high-accuracy finite-difference methods for linear wave propagation. SIAM J. Sci. Comput. 22, 476–502 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation through grants OCE 1059703 and DMS-1115277. The second author is kindly supported by the Deutsche Forschungsgemeinschaft (DFG) within SPP 1276: MetStroem. We thank the two reviewers for detailed and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Boyd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyd, J.P., Gassner, G. & Sadiq, B.A. The Nonconvergence of \(h\)-Refinement in Prolate Elements. J Sci Comput 57, 372–389 (2013). https://doi.org/10.1007/s10915-013-9711-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9711-2

Keywords

Navigation