Skip to main content
Log in

Variational Image Segmentation Models Involving Non-smooth Data-Fidelity Terms

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This article introduces a class of piecewise-constant image segmentation models that involves \(L^1\) norms as data fidelity measures. The \(L^1\) norms enable to segment images with low contrast or outliers such as impulsive noise. The regions to be segmented are represented as smooth functions instead of the Heaviside expression of level set functions as in the level set method. In order to deal with both non-smooth data-fitting and regularization terms, we use the variable splitting scheme to obtain constrained optimization problems, and apply an augmented Lagrangian method to solve the problems. This results in fast and efficient iterative algorithms for piecewise-constant image segmentation. The segmentation framework is extended to vector-valued images as well as to a multi-phase model to deal with arbitrary number of regions. We show comparisons with Chan-Vese models that use \(L^2\) fidelity measures, to enlight the benefit of the \(L^1\) ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. https://sites.google.com/site/miyounjungr/publications

References

  1. Alliney, S.: A property of the minimum vectors of a regularizing functional defined by means of the absolute norm. IEEE Trans. Signal Proc. 45(5), 913–917 (1997)

    Article  Google Scholar 

  2. Bae, E., Yuan, J., Tai, X.C.: Global minimization for continuous multiphase partitioning problems using a dual approach. Int. J. Comput. Vis. 92(1), 112–129 (2009)

    Article  MathSciNet  Google Scholar 

  3. Bar, L., Brook, A., Sochen, N., Kiryati, N.: Deblurring of color images corrupted by impulsive noise. IEEE Trans. Image Proc. 16(4), 1101–1111 (2007)

    Article  MathSciNet  Google Scholar 

  4. Bertsekas, D.: Constrained Optimization and Lagrange Multiplier Methods, Computer Science and Applied Mathematics. Academic Press, Boston (1982)

    Google Scholar 

  5. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2010)

    Article  MATH  Google Scholar 

  6. Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J., Osher, S.: Fast global minimization of the active contour/snake models. J. Math. Imaging Vis. 28(2), 151–167 (2007)

    Article  MathSciNet  Google Scholar 

  7. Brown, E., Chan, T., Bresson, X.: A convex approach for multi-phase piecewise constant mumford-shah image segmentation. UCLA CAM report 09–66 (2009)

  8. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  9. Chan, R., Ho, C., Nikolova, M.: Salt-and-pepper noise removal by median-type noise detectors and edge-preserving regularization. IEEE Trans. Image Proc. 14(10), 1479–1485 (2005)

    Article  Google Scholar 

  10. Chan, T., Esedoglu, S.: Aspects of total varation regularized l1 function approximation. SIAM J. Appl. Math. 65(5), 1817–1837 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chan, T., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chan, T., Sandberg, B., Vese, L.: Active contours without edges for vector-valued images. J. Vis. Commun. Image Represent. 11, 130–141 (2000)

    Article  Google Scholar 

  13. Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Proc. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  14. Cohen, L.: On active contour models and balloons. CVGIP: Image Underst. 53, 211–218 (1991)

    Article  MATH  Google Scholar 

  15. Douglas, J., Rachford, H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82(3), 421–439 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  16. Eckstein, J.: Nonlinear proximal point algorithms using bregman functions, with applications to convex programming. Math. Oper. Res. 18(1), 202–226 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  17. Eckstein, J., Bertsekas, D.: On the douglasrachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 5, 293–318 (1992)

    Article  MathSciNet  Google Scholar 

  18. Esser, E.: Applications of lagrangian-based alternating direction methods and connections to split-bregman. UCLA CAM report 09-31 (2009)

  19. Gabay, D.: Applications of the method of multipliers to variational inequalities. In: Fortin, M., Glowinski, R. (eds.) Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary Value Problems, Stud. Math. Appl., North Holland, Amsterdam, chap 9 pp. 299–331 (1983)

  20. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite-element approximations. Comput. Math. Appl. 2, 17–40 (1976)

    Article  MATH  Google Scholar 

  21. Glowinski, R., Marroco, A.: Sur l’approximation, par elements finis d’ordre un, et la resolution, par penalisation-dualité d’une classe de problemes de dirichlet non lineares. Revue Française d’Automatique, Informatique et Recherche Opérationelle 9, 41–76 (1975)

    MATH  Google Scholar 

  22. Goldstein, T., Bresson, X., Osher, S.: Geometric applications of the split bregman method: segmentation and surface reconstruction. J. Sci. Comput. 45, 272–293 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Goldstein, T., Osher, S.: The split bregman method for l1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Jung, M., Bresson, X., Chan, T., Vese, L.: Nonlocal mumford-shah regularizers for color image restoration. IEEE Trans. Image Proc. 20(6), 1583–1598 (2011)

    Article  MathSciNet  Google Scholar 

  25. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 17, 321–331 (1988)

    Article  Google Scholar 

  26. Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., Yezzy, A.: Gradient flows and geometric active contour models. Proceedings of the ICCV’95, Cambridge, MA, pp. 810–815 (1995)

  27. Kimmel, R.: Osher, S., Paragios N. (eds.) Fast Edge Integration, Geometric Level Set Methods in Imaging, Vision, and Graphics. Springer, New York (2003)

  28. Kiwiel, K.: Proximal minimization methods with generalized bregman functions. SIAM J. Control Optim. 35(4), 1142–1168 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  29. Lee, Y.T., Le, T.: Active contour without edges for multiphase segmentations with the presence of poisson noise. UCLA CAM report 11-46 (2011)

  30. Lellmann, J., Schnörr, C.: Continuous multiclass labeling approaches and algorithms. SIAM J. Imaging Sci. 4, 1049–1096 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  31. Li, F., Shen, C., Li, C.: Multiphase soft segmentation with total variation and \(h^1\) regularization. J. Math. Imaging Vis. 37, 98–111 (2010)

    Article  MathSciNet  Google Scholar 

  32. Lie, J., Lysaker, M., Tai, X.C.: A binary level set model and some applications to mumford-shah image segmentation. IEEE Trans. Image Proc. 15, 1171–1181 (2006)

    Google Scholar 

  33. Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: a level set approach. IEEE Trans. Pattern Anal. Mach. Intell. 17, 158–175 (1995)

    Google Scholar 

  34. Martinet, B.: Régularisation dinéquations variationnelles par approximations successives. Rev. Française Informat Recherche Opérationnelle 4, 154–158 (1970)

    MATH  MathSciNet  Google Scholar 

  35. Mota, J., Xavier, J., Aguiar, P., Puschel, M.: A proof of convergence for the alternating direction method of multipliers applied to polyhedral-constrained functions. Technical report (2011)

  36. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  37. Nikolova, M.: Minimizers of cost-functions involving nonsmooth data-fidelity terms. SIAM J. Numer. Anal. 40(3), 965–994 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  38. Nikolova, M.: A variational approach to remove outliers and impulse noise. J. Math. Imaging Vis. 20, 99–120 (2004)

    Article  MathSciNet  Google Scholar 

  39. Nikolova, M.: Weakly constrained minimization: application to the estimation of images and signals involving constant regions. J. Math. Imaging Vis. 21(2), 155–175 (2004)

    Article  MathSciNet  Google Scholar 

  40. Nocedal, J., Wright, S.: Numerical Optimization. Springer, NewYork (1999)

    Book  MATH  Google Scholar 

  41. Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for the total variation based image restoration. Multiscale Model. Simul. 4, 460–489 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  42. Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  43. Paragios, N., Deriche, R.: Geodesic active regions and level set methods for supervised texture segmentation. Int. J. Comput. Vis. 46(3), 223–247 (2002)

    Article  MATH  Google Scholar 

  44. Pock, T., Chambolle, A., Cremers, D., Bischof, H.: A convex approach for computing minimal partitions. In: IEEE Conference on Computer Vision and, Pattern Recognition, pp. 810–817 (2009)

  45. Potts, R., Domb, C.: Some generalized order-disorder transformations. Mathematical Proceedings of the Cambridge Philosophical Society, pp. 106–109 (1952)

  46. Rockafellar, R.: Augmented lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1(2), 97–116 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  47. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 227–238 (1996)

    Google Scholar 

  48. Sagiv, C., Sochen, N.A., Zeevi, Y.Y.: Integrated active contours for texture segmentation. IEEE Trans. Image Proc. 15, 1633–1646 (2006)

    Article  Google Scholar 

  49. Samson, C., Blanc-Feraud, L., Aubert, G., Zerubia, J.: A variational model for image classification and restoration. IEEE Trans. Patt. Anal. Mach. Intell. 22(5), 460–472 (2000)

    Google Scholar 

  50. Setzer, S.: Operator splittings, bregman methods and frame shrinkage in image processing. Int. J. Comput. Vis. 92, 265–280 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  51. Vese, L., Chan, T.: A multiphase level set framework for image segmentation using the mumford and shah model. Int. J. Comput. Vis. 50(3), 271–293 (2002)

    Article  MATH  Google Scholar 

  52. Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci. 1(3), 248–272 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  53. Yang, Y., Wu, B.: A new and fast multiphase image segmentation model for color images. Math. Probl. Eng. 2012 (2012). doi:10.1155/2012/494761

  54. Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for l1-minimization with applications to compressed sensing. SIAM J. Imaging Sci. 1(1), 143–168 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  55. Zach, C., Gallup, D., Frahm, J., Niethammer, M.: Fast global labeling for real-time stereo using multiple plane sweeps. In: Vision, Modeling and Visualization Workshop, pp. 243–252 (2008)

  56. Zhang, R., Bresson, X., Chan, T., Tai, X.: Four color theorom and convex relaxation for image segmentation with any number of regions. UCLA CAM report 13-16 (2013)

  57. Zhang, Y.: An alternating direction algorithm for nonnegative matrix factorization. Technical report (2010)

  58. Zhao, H.K., Chan, T., Merriman, B., Osher, S.: A variational level set approach to multiphase motion. J. Comput. Phys. 127(31), 179–195 (2006)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

Miyoun Jung was supported in part by TJ Park Science Fellowship of POSCO TJ Park Foundation and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2013-010416). Myungjoo Kang was supported in part by Basic Science Research Program (2013-025173) through the National Research Foundation of Korea and by the Ministry of Culture, Sports and Tourism (MCST) and Korea Creative Content Agency (KOCCA) in the Culture Technology(CT) Research & Development Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miyoun Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, M., Kang, M. & Kang, M. Variational Image Segmentation Models Involving Non-smooth Data-Fidelity Terms. J Sci Comput 59, 277–308 (2014). https://doi.org/10.1007/s10915-013-9766-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9766-0

Keywords

Navigation