Skip to main content
Log in

Simulation of an \(n^{+}\hbox {-}n\hbox {-}n^{+}\) Diode by Using Globally-Hyperbolically-Closed High-Order Moment Models

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

By the moment closure of the Boltzmann transport equation, the extended hydrodynamic models for electron transport have been derived in Cai et al. (J Math Phys 53:103503, 2012). With the numerical scheme developed in Li et al. (2012) recently, it has been demonstrated that the derived extended hydrodynamic models can capture the major features of the solution of kinetic equations. As the application of the models and the numerical scheme proposed therein, we in this paper carry out the numerical simulation to investigate the carrier transport in \(n^{+}\)-\(n\)-\(n^{+}\) structures by solving the moment system derived from the Boltzmann–Poisson equations. Without any additional empirical parameters than that used in directly solving the kinetic equations, we obtain numerical results by the extended hydrodynamic models with very satisfied agreement with the solution of the kinetic equations, even in case that the length of the channel is as short as 50 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Banoo, K., Rhew, J.-H., L. M., Shu, C-W., Jerome, J.W.: Simulating quasi-ballistic transport in Si nanotransistors. In: Book of Abstracts. IWCE Glasgow 2000. 7th International Workshop on Computational Electronics, pp. 8–9 (2000)

  2. Cai, Z., Fan, Y., Li, R.: Globally hyperbolic regularization of Grad’s moment system. Comm. Pure Appl. Math. To appear in (2012)

  3. Cai, Z., Fan, Y., Li, R., Lu, T., Wang, Y.: Quantum hydrodynamics models by moment closure of wigner equation. J. Math. Phys. 53, 103503 (2012)

    Article  MathSciNet  Google Scholar 

  4. Cai, Z., Li, R.: Numerical regularized moment method of arbitrary order for Boltzmann-BGK equation. SIAM J. Sci. Comput. 32(5), 2875–2907 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cai, Z., Li, R., Wang, Y.: Numerical regularized moment method for high Mach number flow. Commun. Comput. Phys. 11(5), 1415–1438 (2012)

    MathSciNet  Google Scholar 

  6. Carrillo, J.A., Gamba, I., Shu, C.-W.: Computational macroscopic approximations to the 1-D relaxation-time kinetic system for semiconductors. Phys. D 146, 289–306 (1999)

    Article  MathSciNet  Google Scholar 

  7. Carrillo, J.A., Gamba, I.M., Majorana, A., Shu, C.-W.: 2D semiconductor device simulations by Weno–Boltzmann schemes: efficiency, boundary conditions and comparison to Monte Carlo methods. J. Comput. Phys. 214(1), 55–80 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Carrillo, J.A., Gamba, I.M., Muscato, O., Shu, C.-W.: Comparison of Monte Carlo and deterministic simulations of a silicon diode. In: IMA Volumes in Mathematics and Its Applications, vol. 135, pp. 75–84. Springer (2004)

  9. Chen, S., Liu, Y., Shu, C.-W.: A discontinuous Galerkin implementation of a domain decomposition method for kinetic-hydrodynamic coupling multiscale problems in gas dynamics and device simulations. J. Comput. Phys. 225(2), 1314–1330 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Goldsman, N., Lin, C.-K., Han, Z., Huang, C.-K.: Advances in the spherical harmonic-Boltzmann–Wigner approach to device simulation. Superlattices Microstruct. 27(2–3), 159–175 (2000)

    Article  Google Scholar 

  11. Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2(4), 331–407 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  12. Grasser, T., Kosina, H., Tang, T.-W., Selberherr, S.: A review of hydrodynamic and energy-transport models for semiconductor device simulation. Proc. IEEE 91(2), 251–274 (2003)

    Article  Google Scholar 

  13. Hu, X., Tang, S., Leroux, M.: Stationary and transient simulations for a one-dimensional resonant tunneling diode. Commun. Comput. Phys. 4(5), 1034–1050 (2008)

    Google Scholar 

  14. Jüngel, A.: A note on current–voltage characteristics from the quantum hydrodynamic equations for semiconductors. Appl. Math. Lett. 10(4), 29–34 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  16. Li, R., Lu, T., Wang, Y., Yao, W.: Numerical method for high order hyperbolic moment system of Wigner equation. Technical Report of School of Math Sciences, Peking University, 2012 (036), http://www.mathinst.pku.edu.cn/view.php?id=8645&type=file&module=download (2012)

  17. Lu, T., Du, G., Liu, X., Zhang, P.: A finite volume method for the multi subband Boltzmann equation with realistic 2D scattering in DG MOSFETs. Commun. Comput. Phys. 10, 305–338 (2011)

    Google Scholar 

  18. Ringhofer, C.: Computational methods for semiclassical and quantum transport in semiconductor devices. Acta Numerica 6, 485–521 (1997)

    Article  MathSciNet  Google Scholar 

  19. Ringhofer, C.: Numerical methods for the semiconductor Boltzmann equation based on spherical harmonics expansions and entropy discretizations. Trans. Theory Stat. Phys. 31, 431–452 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Romano, V., Russo, G.: Numerical solution for hydrodynamical models of semiconductors. Math. Models Methods Appl. Sci. 10(07), 1099–1120 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Scharfetter, D.L., Gummel, H.K.: Large signal analysis of a silicon read diode oscillator. IEEE Trans. Electron Devices 15, 64–77 (1969)

    Article  Google Scholar 

  22. Shan, X., He, X.: Discretization of the velocity space in the solution of the Boltzmann equation. Phys. Rev. Lett. 80(1), 65–68 (1998)

    Article  Google Scholar 

  23. Stratton, R.: Diffusion of hot and cold electrons in semiconductor barriers. Phys. Rev. 126, 2002–2014 (Jun 1962)

  24. Struchtrup, H.: Extended moment method for electrons in semiconductors. Phys. A Stat. Mech. Appl. 275(1–2), 229–255 (2000)

    Article  Google Scholar 

  25. Tang, T.-W.: Extension of the Scharfetter–Gummel algorithm to the energy balance equation. IEEE Trans. Electron Devices 31(12), 1912–1914 (1984)

    Article  Google Scholar 

  26. Vasileska, D., Goodnick, S.M., Klimeck, G.: Computational Electronics Semiclassical and Quantum Device Modeling and Simulation. CRC Press, Taylor & Francis Group, New York (2010)

    Book  Google Scholar 

Download references

Acknowledgments

This research of R. Li was supported in part by the National Basic Research Program of China (2011CB309704) and Fok Ying Tong Education and NCET in China. T. Lu was supported in part by the NSFC (11011130029, 91230107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiao Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Z., Li, R., Lu, T. et al. Simulation of an \(n^{+}\hbox {-}n\hbox {-}n^{+}\) Diode by Using Globally-Hyperbolically-Closed High-Order Moment Models. J Sci Comput 59, 761–774 (2014). https://doi.org/10.1007/s10915-013-9781-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9781-1

Keywords

Navigation