Skip to main content
Log in

The Local Discontinuous Galerkin Method for the Fourth-Order Euler–Bernoulli Partial Differential Equation in One Space Dimension. Part II: A Posteriori Error Estimation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper new a posteriori error estimates for the local discontinuous Galerkin (LDG) method for one-dimensional fourth-order Euler–Bernoulli partial differential equation are presented and analyzed. These error estimates are computationally simple and are obtained by solving a local steady problem with no boundary condition on each element. We use the optimal error estimates and the superconvergence results proved in Part I to show that the significant parts of the discretization errors for the LDG solution and its spatial derivatives (up to third order) are proportional to \((k+1)\)-degree Radau polynomials, when polynomials of total degree not exceeding \(k\) are used. These results allow us to prove that the \(k\)-degree LDG solution and its derivatives are \(\mathcal O (h^{k+3/2})\) superconvergent at the roots of \((k+1)\)-degree Radau polynomials. We use these results to construct asymptotically exact a posteriori error estimates. We further apply the results proved in Part I to prove that, for smooth solutions, these a posteriori LDG error estimates for the solution and its spatial derivatives at a fixed time \(t\) converge to the true errors at \(\mathcal O (h^{k+5/4})\) rate. We also prove that the global effectivity indices, for the solution and its derivatives up to third order, in the \(L^2\)-norm converge to unity at \(\mathcal O (h^{1/2})\) rate. Our proofs are valid for arbitrary regular meshes and for \(P^k\) polynomials with \(k\ge 1\), and for periodic and other classical mixed boundary conditions. Our computational results indicate that the observed numerical convergence rates are higher than the theoretical rates. Finally, we present a local adaptive procedure that makes use of our local a posteriori error estimate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1965)

    Google Scholar 

  2. Adjerid, S., Baccouch, M.: The discontinuous Galerkin method for two-dimensional hyperbolic problems. I: Superconvergence error analysis. J. Sci. Comput. 33, 75–113 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Adjerid, S., Baccouch, M.: The discontinuous Galerkin method for two-dimensional hyperbolic problems. II: A posteriori error estimation. J. Sci. Comput. 38, 15–49 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Adjerid, S., Baccouch, M.: Asymptotically exact a posteriori error estimates for a one-dimensional linear hyperbolic problem. Appl. Numer. Math. 60, 903–914 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Adjerid, S., Baccouch, M.: Adaptivity and error estimation for discontinuous Galerkin methods. John Barrett Lectures on Discontinuous Galerkin Methods, IMA, Springer (accepted, 2013)

  6. Adjerid, S., Devine, K.D., Flaherty, J.E., Krivodonova, L.: A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems. Comput. Methods Appl. Mech. Eng. 191, 1097–1112 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Adjerid, S., Klauser, A.: Superconvergence of discontinuous finite element solutions for transient convection-diffusion problems. J. Sci. Comput. 22, 5–24 (2005)

    Article  MathSciNet  Google Scholar 

  8. Adjerid, S., Massey, T.C.: A posteriori discontinuous finite element error estimation for two-dimensional hyperbolic problems. Comput. Methods Appl. Mech. Eng. 191, 5877–5897 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Adjerid, S., Massey, T.C.: Superconvergence of discontinuous finite element solutions for nonlinear hyperbolic problems. Comput. Methods Appl. Mech. Eng. 195, 3331–3346 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  11. Baccouch, M.: A posteriori error estimates for a discontinuous Galerkin method applied to one-dimensional nonlinear scalar conservation laws. J. Appl. Numer. Math. (under review, 2012)

  12. Baccouch, M.: Asymptotically exact a posteriori error estimates for the one-dimensional second-order wave equation. Numer. Methods Partial Differ. Equ. (under review, 2012)

  13. Baccouch, M.: Asymptotically exact a posteriori LDG error estimates for one-dimensional transient convection-diffusion problems. J. Appl. Math. Comput. (under review, 2012)

  14. Baccouch, M.: A local discontinuous Galerkin method for the second-order wave equation. Comput. Methods Appl. Mech. Eng. 209–212, 129–143 (2012)

    Article  MathSciNet  Google Scholar 

  15. Baccouch, M.: The local discontinuous Galerkin method for the fourth-order Euler-Bernoulli partial differential equation in one space dimension. Part I: Superconvergence error analysis. J. Sci. Comput. (2013). doi:10.1007/s10915-013-9782-0

  16. Baccouch, M., Adjerid, S.: Discontinuous Galerkin error estimation for hyperbolic problems on unstructured triangular meshes. Comput. Methods Appl. Mech. Eng. 200, 162–177 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Cheng, Y., Shu, C.-W.: Superconvergence of discontinuous Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and convection-diffusion equations in one space dimension. SIAM J. Numer. Anal. 47, 4044–4072 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Cockburn, B.: A simple introduction to error estimation for nonlinear hyperbolic conservation laws. In: Proceedings of the 1998 EPSRC Summer School in Numerical Analysis, SSCM, volume 26 of the Graduate Student’s Guide for Numerical Analysis, pp. 1–46. Springer, Berlin (1999)

  19. Cockburn, B., Gremaud, P.A.: Error estimates for finite element methods for nonlinear conservation laws. SIAM J. Numer. Anal. 33, 522–554 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Cockburn, B., Karniadakis, G.E., Shu, C.W.: Discontinuous Galerkin Methods Theory, Computation and Applications, Lecture Notes in Computational Science and Engineering, vol. 11. Springer, Berlin (2000)

    Google Scholar 

  21. Hartmann, R., Houston, P.: Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservations laws. SIAM J. Sci. Comput. 24, 979–1004 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Houston, P., Schötzau, D., Wihler, T.: Energy norm a posteriori error estimation of \(hp\)-adaptive discontinuous Galerkin methods for elliptic problems. Math. Models Methods Appl. Sci. 17, 33–62 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Krivodonova, L., Flaherty, J.E.: Error estimation for discontinuous Galerkin solutions of two-dimensional hyperbolic problems. Adv. Comput. Math. 19, 57–71 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Technical Report A-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos (1973)

  25. Rivière, B., Wheeler, M.: A posteriori error estimates for a discontinuous Galerkin method applied to elliptic problems. Comput. Appl. Math. 46, 143–163 (2003)

    Article  Google Scholar 

  26. Yang, Y., Shu, C.-W.: Analysis of optimal superconvergence of discontinuous Galerkin method for linear hyperbolic equations. SIAM J. Numer. Anal. 50, 3110–3133 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author would also like to thank the anonymous referees for their constructive comments and remarks which helped improve the quality and readability of the paper. This research was partially supported by the NASA Nebraska Space Grant Program and UCRCA at the University of Nebraska at Omaha.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahboub Baccouch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baccouch, M. The Local Discontinuous Galerkin Method for the Fourth-Order Euler–Bernoulli Partial Differential Equation in One Space Dimension. Part II: A Posteriori Error Estimation. J Sci Comput 60, 1–34 (2014). https://doi.org/10.1007/s10915-013-9783-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9783-z

Keywords

Navigation