Skip to main content
Log in

Weighted Non-linear Compact Schemes for the Direct Numerical Simulation of Compressible, Turbulent Flows

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A new class of compact-reconstruction weighted essentially non-oscillatory (CRWENO) schemes were introduced (Ghosh and Baeder in SIAM J Sci Comput 34(3): A1678–A1706, 2012) with high spectral resolution and essentially non-oscillatory behavior across discontinuities. The CRWENO schemes use solution-dependent weights to combine lower-order compact interpolation schemes and yield a high-order compact scheme for smooth solutions and a non-oscillatory compact scheme near discontinuities. The new schemes result in lower absolute errors, and improved resolution of discontinuities and smaller length scales, compared to the weighted essentially non-oscillatory (WENO) scheme of the same order of convergence. Several improvements to the smoothness-dependent weights, proposed in the literature in the context of the WENO schemes, address the drawbacks of the original formulation. This paper explores these improvements in the context of the CRWENO schemes and compares the different formulations of the non-linear weights for flow problems with small length scales as well as discontinuities. Simplified one- and two-dimensional inviscid flow problems are solved to demonstrate the numerical properties of the CRWENO schemes and its different formulations. Canonical turbulent flow problems—the decay of isotropic turbulence and the shock-turbulence interaction—are solved to assess the performance of the schemes for the direct numerical simulation of compressible, turbulent flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Liu, X., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Shu, C.-W.: High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51(1), 82–126 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Balsara, D.S., Shu, C.-W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160, 405–452 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Weinan, E., Liu, J.G.: Essentially compact schemes for unsteady viscous incompressible flows. J. Comput. Phys. 126, 122–138 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Wilson, R.V., Demuren, A.Q., Carpenter, M.H.: High-order compact schemes for numerical simulation of incompressible flows. ICASE Report 98-13 (1998)

  8. Lerat, A., Corre, C.: A residual-based compact scheme for the compressible Navier–Stokes equations. J. Comput. Phys. 170, 642–657 (2001)

    Google Scholar 

  9. Ekaterinaris, J.A.: Implicit, high-resolution compact schemes for gas dynamics and aeroacoustics. J. Comput. Phys. 156, 272–299 (1999)

    Google Scholar 

  10. Lee, C., Seo, Y.: A new compact spectral scheme for turbulence simulations. J. Comput. Phys. 183, 438–469 (2002)

    Article  MATH  Google Scholar 

  11. Nagarajan, S., Lele, S.K., Ferziger, J.H.: A robust high-order compact method for large eddy simulation. J. Comput. Phys. 191, 392–419 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cockburn, B., Shu, C.-W.: Nonlinearly stable compact schemes for shock calculation. SIAM J. Numer. Anal. 31, 607–627 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  13. Yee, H.C.: Explicit and implicit multidimensional compact high-resolution shock-capturing methods: formulation. J. Comput. Phys. 131, 216–232 (1997)

    Article  MATH  Google Scholar 

  14. Adams, N.A., Shariff, K.: A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems. J. Comput. Phys. 127, 27–51 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Pirozzoli, S.: Conservative hybrid compact-WENO schemes for shock-turbulence interaction. J. Comput. Phys. 178, 81–117 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ren, Y.-X., Liu, M., Zhang, H.: A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 192, 365–386 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Deng, X., Zhang, H.: Developing high order weighted compact nonlinear schemes. J. Comput. Phys. 165, 22–44 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Zhang, S., Jiang, S., Shu, C.-W.: Development of nonlinear weighted compact schemes with increasingly higher order accuracy. J. Comput. Phys. 227, 7294–7321 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Wang, Z., Huang, G.P.: An essentially nonoscillatory high order Padé-type (ENO-Padé) scheme. J. Comput. Phys. 177, 37–58 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ghosh, D., Baeder, J.D.: Compact reconstruction schemes with weighted ENO limiting for hyperbolic conservation laws. SIAM J. Sci. Comput. 34(3), A1678–A1706 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ghosh, D.: Compact-Reconstruction Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws. Ph.D. thesis, University of Maryland, College Park, (2013)

  22. Ghosh, D., Medida, S., Baeder, J.D.: Compact-reconstruction weighted essentially non-oscillatory schemes for unsteady Euler/Navier-Stokes equations. In: AIAA Paper 2012-2832, 42nd AIAA Fluid Dynamics Conference and Exhibit, New Orleans, LA 25–28 June, 2012

  23. Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207, 542–567 (2005)

    Article  MATH  Google Scholar 

  24. Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227, 3191–3211 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Yamaleev, N.K., Carpenter, M.H.: A systematic methodology for constructing high-order energy stable WENO schemes. J. Comput. Phys. 228, 4248–4272 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Pirozzoli, S.: On the spectral properties of shock-capturing schemes. J. Comput. Phys. 219, 489–497 (2006)

    Article  MATH  Google Scholar 

  27. Fauconnier, D., Dick, E.: On the spectral and conservation properties of nonlinear discretization operators. J. Comput. Phys. 230, 4488–4518 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  28. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  29. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes, II. J. Comput. Phys. 83, 32–78 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  30. Martín, M.P., Taylor, E.M., Wu, M., Weirs, V.G.: A bandwidth-optimized WENO Scheme for the direct numerical simulation of compressible turbulence. J. Comput. Phys. 220, 270–289 (2006)

    Article  MATH  Google Scholar 

  31. Taylor, E.M., Martín, M.P.: Stencil adaptation properties of a WENO scheme in direct numerical simulations of compressible turbulence. J. Sci. Comput. 30(3), 533–554 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  32. Tam, C.K.W., Webb, J.C.: Dispersion-relation-preserving finite difference schemes for computational acoustics. J. Comput. Phys. 107, 262–281 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  33. Rogallo, R.S.: Numerical experiments in homogenous turbulence. NASA Technical Memorandum 81315 (1981)

  34. Mansour, N.N., Wray, A.A.: Decay of isotropic turbulence at low Reynolds number. Phys. Fluids 6(2), 808–814 (1994)

    Article  MATH  Google Scholar 

  35. Lee, S., Lele, S.K., Moin, P.: Direct numerical simulation of isotropic turbulence interacting with a weak shock wave. J. Fluid Mech. 251, 533–562 (1993)

    Article  Google Scholar 

  36. Lee, S., Lele, S.K., Moin, P.: Interaction of isotropic turbulence with shock waves: effect of shock strength. J. Fluid Mech. 340, 225–247 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  37. Mahesh, K., Lele, S.K., Moin, P.: The influence of entropy fluctuations on the interaction of turbulence with a shock wave. J. Fluid Mech. 334, 353–379 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  38. Larsson, J., Lele, S.K.: Direct numerical simulation of canonical shock/turbulence interaction. Phys. Fluids 21(12), (2009) paper 126101

    Google Scholar 

  39. Colonius, T., Lele, S.K., Moin, P.: Boundary conditions for direct computation of aerodynamic sound. AIAA J. 31, 1574–1582 (1993)

    Article  MATH  Google Scholar 

  40. Freund, J.B.: Proposed inflow/outflowboundary condition for direct computation of aerodynamic sound. AIAA J. 35, 740–742 (1997)

    Article  MATH  Google Scholar 

  41. Lee, S., Moin, P., Lele, S.K.: Interaction of isotropic turbulence with a shock wave. Report TF-52, Thermosciences Division, Department of Mechanical Engineering, Stanford University (1992)

  42. Mahesh, K., Moin, P., Lele, S.K.: The interaction of a shock wave with a turbulent shear flow. Report TF-69, Thermosciences Division, Department of Mechanical Engineering, Stanford University (1996)

Download references

Acknowledgments

This research was supported by the U.S. Army’s MAST CTA Center for Microsystem Mechanics with Mr. Chris Kroninger (ARL-VTD) as Technical Monitor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debojyoti Ghosh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, D., Baeder, J.D. Weighted Non-linear Compact Schemes for the Direct Numerical Simulation of Compressible, Turbulent Flows. J Sci Comput 61, 61–89 (2014). https://doi.org/10.1007/s10915-014-9818-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9818-0

Keywords

Navigation