Skip to main content
Log in

Image Decomposition using a Local Gradient Constraint

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a new model for structure/texture decomposition using a local gradient constraint is presented. This constraint is used because gradients of the structure component \(u\) are close to the gradients of a given noise-free image \(f\) in locally piecewise smooth regions. We consider the TV-Hilbert model as a blur and deblur process for image decomposition. By incorporating the additional local constraint of the image gradient into the classical TV-Hilbert model, we derive a new image decomposition model. The proposed model can separate the texture component \(v\) from \(f\) effectively while preserving sharp edges and maintaining homogeneous regions in the structure component \(u\) without producing staircase artifacts. Numerical experiments are performed to demonstrate the efficiency of our model in comparison with well-known image decomposition approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Andreu-Vaillo, F., Caselles, V., Mazón, J.M.: Parabolic Quasilinear Equations Minimizing Linear Growth Functionals, Progress in Mathematics 223. Birkhäuser, Basel (2004)

    Book  Google Scholar 

  2. Aujol, J.-F., Aubert, G., Blanc-Féraud, L., Chambolle, A.: Image decomposition into a bounded variation component and an oscillating component. J. Math. Imaging Vis. 22, 71–88 (2005)

    Article  Google Scholar 

  3. Aujol, J.-F., Chambolle, A.: Dual norms and image decomposition models. Int. J. Comput. Vis. 63, 85–104 (2005)

    Article  Google Scholar 

  4. Aujol, J.-F., Gilboa, G.: Implementation and parameter selection for BV-Hilbert space regularization. CAM Report 04–66, UCLA, Los Angeles, CA (2004)

  5. Aujol, J.-F., Gilboa, G., Chan, T.F., Osher, S.: Structure–texture decomposition by a TV-Gabor model. Lect. Notes Comput. Sci. 3752, 85–96 (2005)

    Article  Google Scholar 

  6. Aujol, J.-F., Gilboa, G., Chan, T.F., Osher, S.: Structure–texture image decompositon-modeling, algorithms, and parameter selection. Int. J. Comput. Vis. 67, 111–136 (2006)

    Article  MATH  Google Scholar 

  7. Buades, A., Le, T.M., Morel, J.-M., Vese, L.A.: Fast cartoon + texture image filters. IEEE Trans. Image Process. 19, 1978–1986 (2010)

    Article  MathSciNet  Google Scholar 

  8. Chambolle, A., Lions, P.-L.: Image recovery via total variation minimization and related problems. Numer. Math. 76, 167–188 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  10. Chan, T.F., Esedoglu, S.: Aspects of total variation regularized L1 function approximation. SIAM J. Appl. Math. 65, 1817–1837 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chan, T.F., Esedoglu, S., Park, F.E.: Image decomposition combining staircase reduction and texture extraction. J. Vis. Commun. Image R. 18, 464–486 (2007)

    Article  Google Scholar 

  12. Choudhury, P., Tumblin, J.: The trilateral filter for high contrast images and meshes. In: Proceedings of the Eurographics Symposium on Rendering, pp. 186–196 (2003)

  13. Farbman, Z., Fattal, R., Lischinski, D., Szeliski, R.: Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans. Graphic. 27, 67:1–67:10 (2008)

    Article  Google Scholar 

  14. Garnett, J.B., Le, T.M., Meyer, Y., Vese, L.A.: Image decompositions using bounded variation and generalized homogeneous Besov spaces. Appl. Comput. Harmon. Anal. 23, 25–56 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Goldstein, T., Osher, S.: The split Bregman method for L1 regularized problems. SIAM J. Imaging Sci. 2, 323–343 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jones, P.W., Le, T.M.: Local scales and multiscale image decompositions. Appl. Comput. Harmon. Anal. 26, 371–394 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Le, T.M., Vese, L.A.: Image decomposition using total variation and div(BMO). Multiscale Model. Simul. 4, 390–423 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lieu, L., Vese, L.A.: Image restoration and decomposition via bounded total variation and negative Hilbert-Sobolev spaces. CAM Report 05–33, UCLA, Los Angeles, CA (2005)

  19. Meyer, Y.: Oscillating patterns in image processing and nonlinear evolution equations. In: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures. Amer. Math. Soc, Boston, MA (2001)

  20. Osher, S., Solé, A., Vese, L.: Image decomposition and restoration using total variation minimization and the \(H^{-1}\) norm. Multiscale Model. Simul. 1, 349–370 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)

    Article  Google Scholar 

  22. Qiegen, L., Jianhua, L., Yuemin, Z.: Adaptive image decomposition by improved bilateral filter. Int. J. Comput. Appl. 23, 16–22 (2011)

    Google Scholar 

  23. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithm. Phys. D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  24. Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Trans. Graph. 27, 73:1–73:10 (2008)

    Google Scholar 

  25. Su, S.L., Durand, F., Agrawala, M.: De-emphasis of distracting image regions using texture power maps. In Proceedings of 4th ICCV Workshop on Texture Analysis and Synthesis, pp. 119–124 (2005)

  26. Tao, M.W., Johnson, M.K., Paris, S.: Error-tolerant image compositing. Int. J. Comput. Vis. 103, 178–189 (2013)

    Article  MATH  Google Scholar 

  27. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of IEEE ICCV, pp. 839–846 (1998)

  28. Vese, L.A., Osher, S.: Modeling textures with total variation minimization and oscillating patterns in image processing. J. Sci. Comput. 19, 553–572 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci. 1, 248–272 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error measurement to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)

    Article  Google Scholar 

  31. Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Leipzig (1998)

    MATH  Google Scholar 

  32. Xu, L., Lu, C., Xu, Y., Jia, J.: Image smoothing via \(L_0\) gradient minimization. ACM Trans. Graph. 30, 174:1–174:12 (2011)

    Google Scholar 

  33. Zhuo, S., Guo, D., Sim, T.: Robust flash deblurring. In: Proceedings of CVPR IEEE, pp. 2440–2447 (2010)

Download references

Acknowledgments

Myungjoo Kang and Seungmi Oh were supported by the Basic Science Research Program(2014-011269) through the National Research Foundation of Korea and the Development Program (10040409) funded by the Ministry of Knowledge Economy (MKE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seungmi Oh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, S., Kang, M. Image Decomposition using a Local Gradient Constraint. J Sci Comput 63, 213–232 (2015). https://doi.org/10.1007/s10915-014-9889-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9889-y

Keywords

Navigation