Skip to main content
Log in

An Efficient Quadrature-Free Formulation for High Order Arbitrary-Lagrangian–Eulerian ADER-WENO Finite Volume Schemes on Unstructured Meshes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we present a new and efficient quadrature-free formulation for the family of cell-centered high order accurate direct arbitrary-Lagrangian–Eulerian one-step ADER-WENO finite volume schemes on unstructured triangular and tetrahedral meshes that has been developed by the authors in a recent series of papers (Boscheri et al. in J Comput Phys 267:112–138, 2014; Boscheri and Dumbser in Commun Comput Phys 14:1174–1206, 2013; Boscheri and Dumbser in J Comput Phys 275:484–523, 2014; Dumbser and Boscheri in Comput Fluids 86:405–432, 2013). High order of accuracy in time is obtained by using a local space–time Galerkin predictor on moving curved meshes, while a high order accurate nonlinear WENO method is adopted to produce high order essentially non-oscillatory reconstruction polynomials in space. The mesh is moved at each time step according to the solution of a node solver algorithm that assigns a unique velocity vector to each node of the mesh. A rezoning procedure can also be applied when mesh distortions and deformations become too severe. The space–time mesh is then constructed by straight edges connecting the vertex positions at the old time level \(t^n\) with the new ones at the next time level \(t^{n+1}\), yielding closed space–time control volumes, on the boundary of which the numerical flux must be integrated. This is done here with a new and efficient quadrature-free approach: the space–time boundaries are split into simplex sub-elements, i.e. either triangles in 2D or tetrahedra in 3D. This leads to space–time normal vectors as well as Jacobian matrices that are constant within each sub-element. Within the space–time Galerkin predictor stage that solves the Cauchy problem inside each element in the small, the discrete solution and the flux tensor are approximated using a nodal space–time basis. Since these space–time basis functions are defined on a reference element and do not change, their integrals over the simplex sub-surfaces of the space–time reference control volume can be integrated once and for all analytically during a preprocessing step. The resulting integrals are then used together with the space–time degrees of freedom of the predictor in order to compute the numerical flux that is needed in the finite volume scheme. We apply the high order algorithm presented in this paper to the equations of hydrodynamics obtaining convergence rates up to fourth order of accuracy in space and time. A set of classical Lagrangian test problems has been solved and the results have been compared with the ones given by the original formulation of the algorithm (Boscheri and Dumbser 2013, 2014). The efficiency has been monitored and measured for each test case and the new quadrature-free schemes were up to 3.7 times faster than the ones based on Gaussian quadrature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Balsara, D.S.: Multidimensional HLLE Riemann solver: application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 229, 1970–1993 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balsara, D.S.: A two-dimensional HLLC Riemann solver for conservation laws: application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 231, 7476–7503 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balsara, D.S.: Self-adjusting, positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics. J. Comput. Phys. 231, 7504–7517 (2012)

    Article  MathSciNet  Google Scholar 

  4. Benson, D.J.: Computational methods in Lagrangian and Eulerian hydrocodes. Comput. Methods Appl. Mech. Eng. 99, 235–394 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berndt, M., Breil, J., Galera, S., Kucharik, M., Maire, P.H., Shashkov, M.: Two-step hybrid conservative remapping for multimaterial arbitrary Lagrangian–Eulerian methods. J. Comput. Phys. 230, 6664–6687 (2011)

    Article  MATH  Google Scholar 

  6. Berndt, M., Kucharik, M., Shashkov, M.J.: Using the feasible set method for rezoning in ALE. Procedia Comput. Sci. 1, 1879–1886 (2010)

    Article  Google Scholar 

  7. Bochev, P., Ridzal, D., Shashkov, M.J.: Fast optimization-based conservative remap of scalar fields through aggregate mass transfer. J. Comput. Phys. 246, 37–57 (2013)

    Article  MathSciNet  Google Scholar 

  8. Boscheri, W., Balsara, D.S., Dumbser, M.: Lagrangian ADER-WENO finite volume schemes on unstructured triangular meshes based on genuinely multidimensional HLL Riemann solvers. J. Comput. Phys. 267, 112–138 (2014)

    Article  MathSciNet  Google Scholar 

  9. Boscheri, W., Dumbser, M.: Arbitrary-Lagrangian–Eulerian one-step WENO finite volume schemes on unstructured triangular meshes. Commun. Comput. Phys. 14, 1174–1206 (2013)

    MathSciNet  Google Scholar 

  10. Boscheri, W., Dumbser, M.: A direct arbitrary-Lagrangian–Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and nonconservative hyperbolic systems in 3D. J. Comput. Phys. 275, 484–523 (2014)

    Article  MathSciNet  Google Scholar 

  11. Boscheri, W., Dumbser, M., Balsara, D.S.: High order Lagrangian ADER-WENO schemes on unstructured meshes—application of several node solvers to hydrodynamics and magnetohydrodynamics. Int. J. Numer. Methods Fluids 76, 737–778 (2014)

    Article  MathSciNet  Google Scholar 

  12. Boscheri, W., Dumbser, M., Zanotti, O.: High order cell-centered Lagrangian-type finite volume schemes with time-accurate local time stepping on unstructured triangular meshes. J. Comput. Phys. 291, 120–150 (2015)

    Article  MathSciNet  Google Scholar 

  13. Boscheri, W., Loubère, R., Dumbser, M.: Direct Arbitrary-Lagrangian-Eulerian ADER-MOOD Finite Volume Schemes for Multidimensional Hyperbolic Conservation Laws. J. Comput. Phys. (2015). doi:10.1016/j.jcp.2015.03.015

  14. Breil, J., Harribey, T., Maire, P.H., Shashkov, M.J.: A multi-material ReALE method with MOF interface reconstruction. Comput. Fluids 83, 115–125 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Caramana, E.J., Burton, D.E., Shashkov, M.J., Whalen, P.P.: The construction of compatible hydrodynamics algorithms utilizing conservation of total energy. J. Comput. Phys. 146, 227–262 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Carré, G., Del Pino, S., Després, B., Labourasse, E.: A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension. J. Comput. Phys. 228, 5160–5183 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cesenek, J., Feistauer, M., Horacek, J., Kucera, V., Prokopova, J.: Simulation of compressible viscous flow in time-dependent domains. Appl. Math. Comput. 219, 7139–7150 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cheng, J., Shu, C.W.: A high order ENO conservative Lagrangian type scheme for the compressible Euler equations. J. Comput. Phys. 227, 1567–1596 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cheng, J., Toro, E.F.: A 1D conservative Lagrangian ADER scheme. Chin. J. Comput. Phys. 30, 501–508 (2013)

    Google Scholar 

  20. Clain, S., Diot, S., Loubère, R.: A high-order finite volume method for systems of conservation laws—multi-dimensional optimal order detection (MOOD). J. Comput. Phys. 230, 4028–4050 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Claisse, A., Després, B., Labourasse, E., Ledoux, F.: A new exceptional points method with application to cell-centered Lagrangian schemes and curved meshes. J. Comput. Phys. 231, 4324–4354 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cockburn, B., Karniadakis, G.E., Shu, C.W.: Discontinuous Galerkin Methods. Lecture Notes in Computational Science and Engineering. Springer, Berlin (2000)

    Book  Google Scholar 

  23. Després, B., Mazeran, C.: Symmetrization of Lagrangian gas dynamic in dimension two and multimdimensional solvers. C. R. Mecanique 331, 475–480 (2003)

    Article  MATH  Google Scholar 

  24. Després, B., Mazeran, C.: Lagrangian gas dynamics in two-dimensions and Lagrangian systems. Arch. Ration. Mech. Anal. 178, 327–372 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Diot, S., Clain, S., Loubère, R.: Improved detection criteria for the multi-dimensional optimal order detection (mood) on unstructured meshes with very high-order polynomials. Comput. Fluids 64, 43–63 (2012)

    Article  MathSciNet  Google Scholar 

  26. Diot, S., Loubère, R., Clain, S.: The MOOD method in the three-dimensional case: very-high-order finite volume method for hyperbolic systems. Int. J. Numer. Methods Fluids 73, 362–392 (2013)

    Article  Google Scholar 

  27. Dobrev, V.A., Ellis, T.E., Kolev, T.V., Rieben, R.N.: Curvilinear finite elements for Lagrangian hydrodynamics. Int. J. Numer. Methods Fluids 65, 1295–1310 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Dobrev, V.A., Ellis, T.E., Kolev, T.V., Rieben, R.N.: High order curvilinear finite elements for Lagrangian hydrodynamics. SIAM J. Sci. Comput. 34, 606–641 (2012)

    Article  MathSciNet  Google Scholar 

  29. Dobrev, V.A., Ellis, T.E., Kolev, T.V., Rieben, R.N.: High order curvilinear finite elements for axisymmetric Lagrangian hydrodynamics. Comput. Fluids 83, 58–69 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Balsara, D.S., Dumbser, M., Abgrall, R.: Multidimensional HLLC Riemann solver for unstructured meshes—with application to Euler and MHD flows. J. Comput. Phys. 261, 172–208 (2014)

    Article  MathSciNet  Google Scholar 

  31. Dubcova, L., Feistauer, M., Horacek, J., Svacek, P.: Numerical simulation of interaction between turbulent flow and a vibrating airfoil. Comput. Vis. Sci. 12, 207–225 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Dubiner, M.: Spectral methods on triangles and other domains. J. Sci. Comput. 6, 345–390 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  33. Dumbser, M.: Arbitrary-Lagrangian–Eulerian ADER-WENO finite volume schemes with time-accurate local time stepping for hyperbolic conservation laws. Comput. Methods Appl. Mech. Eng. 280, 57–83 (2014)

    Article  MathSciNet  Google Scholar 

  34. Dumbser, M., Balsara, D.S., Toro, E.F., Munz, C.-D.: A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys. 227, 8209–8253 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Dumbser, M., Boscheri, W.: High-order unstructured Lagrangian one-step WENO finite volume schemes for non-conservative hyperbolic systems: applications to compressible multi-phase flows. Comput. Fluids 86, 405–432 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Dumbser, M., Enaux, C., Toro, E.F.: Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws. J. Comput. Phys. 227, 3971–4001 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Dumbser, M., Hidalgo, A., Castro, M., Parés, C., Toro, E.F.: FORCE schemes on unstructured meshes II: non-conservative hyperbolic systems. Comput. Methods Appl. Mech. Eng. 199, 625–647 (2010)

    Article  MATH  Google Scholar 

  38. Dumbser, M., Käser, M.: Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems. J. Comput. Phys. 221, 693–723 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Dumbser, M., Käser, M., Titarev, V.A., Toro, E.F.: Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems. J. Comput. Phys. 226, 204–243 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Dumbser, M., Toro, E.F.: On universal Osher-type schemes for general nonlinear hyperbolic conservation laws. Commun. Comput. Phys. 10, 635–671 (2011)

    MathSciNet  Google Scholar 

  41. Dumbser, M., Uuriintsetseg, A., Zanotti, O.: On arbitrary-Lagrangian–Eulerian one-step WENO schemes for stiff hyperbolic balance laws. Commun. Comput. Phys. 14, 301–327 (2013)

    MathSciNet  Google Scholar 

  42. Dumbser, M., Zanotti, O., Loubère, R., Diot, S.: A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws. J. Comput. Phys. 278, 47–75 (2014)

    Article  MathSciNet  Google Scholar 

  43. Feistauer, M., Horacek, J., Ruzicka, M., Svacek, P.: Numerical analysis of flow-induced nonlinear vibrations of an airfoil with three degrees of freedom. Comput. Fluids 49, 110–127 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Feistauer, M., Kucera, V., Prokopova, J., Horacek, J.: The ALE discontinuous Galerkin method for the simulation of air flow through pulsating human vocal folds. In: AIP Conference Proceedings, vol. 1281, pp. 83–86 (2010)

  45. Francois, M.M., Shashkov, M.J., Masser, T.O., Dendy, E.D.: A comparative study of multimaterial Lagrangian and Eulerian methods with pressure relaxation. Comput. Fluids 83, 126–136 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Galera, S., Maire, P.H., Breil, J.: A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction. J. Comput. Phys. 229, 5755–5787 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. Hidalgo, A., Dumbser, M.: ADER schemes for nonlinear systems of stiff advection–diffusion–reaction equations. J. Sci. Comput. 48, 173–189 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. Hirt, C., Amsden, A., Cook, J.: An arbitrary Lagrangian–Eulerian computing method for all flow speeds. J. Comput. Phys. 14, 227253 (1974)

    Google Scholar 

  49. Hu, C., Shu, C.W.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150, 97–127 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  50. Kamm, J.R., Timmes, F.X.: On efficient generation of numerically robust Sedov solutions. Technical Report LA-UR-07-2849, LANL (2007)

  51. Karniadakis, G.E., Sherwin, S.J.: Spectral/hp Element Methods in CFD. Oxford University Press, Oxford (1999)

    Google Scholar 

  52. Kidder, R.E.: Laser-driven compression of hollow shells: power requirements and stability limitations. Nucl. Fusion 1, 3–14 (1976)

    Article  Google Scholar 

  53. Knupp, P.M.: Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part II—a framework for volume mesh optimization and the condition number of the Jacobian matrix. Int. J. Numer. Methods Eng. 48, 1165–1185 (2000)

    Article  MATH  Google Scholar 

  54. Kucharik, M., Breil, J., Galera, S., Maire, P.H., Berndt, M., Shashkov, M.J.: Hybrid remap for multi-material ALE. Comput. Fluids 46, 293–297 (2011)

    Article  MATH  Google Scholar 

  55. Kucharik, M., Shashkov, M.J.: One-step hybrid remapping algorithm for multi-material arbitrary Lagrangian–Eulerian methods. J. Comput. Phys. 231, 2851–2864 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  56. Li, Z., Yu, X., Jia, Z.: The cell-centered discontinuous Galerkin method for Lagrangian compressible Euler equations in two dimensions. Comput. Fluids 96, 152–164 (2014)

    Article  MathSciNet  Google Scholar 

  57. Liska, R., Shashkov, M.J., Váchal, P., Wendroff, B.: Synchronized flux corrected remapping for ALE methods. Comput. Fluids 46, 312–317 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  58. Liu, W., Cheng, J., Shu, C.W.: High order conservative Lagrangian schemes with Lax–Wendroff type time discretization for the compressible Euler equations. J. Comput. Phys. 228, 8872–8891 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  59. Loubère, R., Dumbser, M., Diot, S.: A new family of high order unstructured mood and ader finite volume schemes for multidimensional systems of hyperbolic conservation laws. Commun. Comput. Phys. 16, 718–763 (2014)

    MathSciNet  Google Scholar 

  60. Loubère, R., Maire, P.H., Váchal, P.: A second-order compatible staggered Lagrangian hydrodynamics scheme using a cell-centered multidimensional approximate Riemann solver. Procedia Comput. Sci. 1, 1931–1939 (2010)

    Article  Google Scholar 

  61. Loubère, R., Maire, P.H., Váchal, P.: 3D staggered Lagrangian hydrodynamics scheme with cell-centered Riemann solver-based artificial viscosity. Int. J. Numer. Methods Fluids 72, 22–42 (2013)

    Article  Google Scholar 

  62. Maire, P.H.: A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes. J. Comput. Phys. 228, 2391–2425 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  63. Maire, P.H.: A high-order one-step sub-cell force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids. Comput. Fluids 46(1), 341–347 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  64. Maire, P.H.: A unified sub-cell force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids. Int. J. Numer. Methods Fluids 65, 1281–1294 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  65. Maire, P.H., Abgrall, R., Breil, J., Ovadia, J.: A cell-centered Lagrangian scheme for two-dimensional compressible flow problems. SIAM J. Sci. Comput. 29, 1781–1824 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  66. Maire, P.H., Breil, J.: A second-order cell-centered Lagrangian scheme for two-dimensional compressible flow problems. Int. J. Numer. Methods Fluids 56, 1417–1423 (2007)

    Article  MathSciNet  Google Scholar 

  67. Maire, P.H., Nkonga, B.: Multi-scale Godunov-type method for cell-centered discrete Lagrangian hydrodynamics. J. Comput. Phys. 228, 799–821 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  68. Munz, C.D.: On Godunov-type schemes for Lagrangian gas dynamics. SIAM J. Numer. Anal. 31, 17–42 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  69. Noh, W.F.: Errors for calculations of strong shocks using artificial viscosity and an artificial heat flux. J. Comput. Phys. 72, 78–120 (1987)

    Article  MATH  Google Scholar 

  70. Ortega, A.L., Scovazzi, G.: A geometrically-conservative, synchronized, flux-corrected remap for arbitrary Lagrangian–Eulerian computations with nodal finite elements. J. Comput. Phys. 230, 6709–6741 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  71. Peery, J.S., Carroll, D.E.: Multi-material ALE methods in unstructured grids. Comput. Methods Appl. Mech. Eng. 187, 591–619 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  72. Sambasivan, S.K., Shashkov, M.J., Burton, D.E.: A finite volume cell-centered Lagrangian hydrodynamics approach for solids in general unstructured grids. Int. J. Numer. Methods Fluids 72, 770–810 (2013)

    Article  MathSciNet  Google Scholar 

  73. Sambasivan, S.K., Shashkov, M.J., Burton, D.E.: Exploration of new limiter schemes for stress tensors in Lagrangian and ALE hydrocodes. Comput. Fluids 83, 98–114 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  74. Scovazzi, G.: Lagrangian shock hydrodynamics on tetrahedral meshes: a stable and accurate variational multiscale approach. J. Comput. Phys. 231, 8029–8069 (2012)

    Article  MathSciNet  Google Scholar 

  75. Smith, R.W.: AUSM(ALE): a geometrically conservative arbitrary Lagrangian–Eulerian flux splitting scheme. J. Comput. Phys. 150, 268286 (1999)

    Google Scholar 

  76. Stroud, A.H.: Approximate Calculation of Multiple Integrals. Prentice-Hall Inc., Englewood Cliffs (1971)

    MATH  Google Scholar 

  77. Titarev, V.A., Toro, E.F.: ADER: arbitrary high order Godunov approach. J. Sci. Comput. 17(1–4), 609–618 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  78. Titarev, V.A., Toro, E.F.: ADER schemes for three-dimensional nonlinear hyperbolic systems. J. Comput. Phys. 204, 715–736 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  79. Titarev, V.A., Tsoutsanis, P., Drikakis, D.: WENO schemes for mixed-element unstructured meshes. Commun. Comput. Phys. 8, 585–609 (2010)

    MathSciNet  Google Scholar 

  80. Toro, E.F., Titarev, V.A.: Derivative Riemann solvers for systems of conservation laws and ADER methods. J. Comput. Phys. 212(1), 150–165 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  81. Toro, E.F.: Anomalies of conservative methods: analysis, numerical evidence and possible cures. Int. J. Comput. Fluid Dyn. 11, 128–143 (2002)

    MathSciNet  Google Scholar 

  82. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, Berlin (2009)

    Book  Google Scholar 

  83. Tsoutsanis, P., Titarev, V.A., Drikakis, D.: WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions. J. Comput. Phys. 230, 1585–1601 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  84. Vilar, F.: Cell-centered discontinuous Galerkin discretization for two-dimensional Lagrangian hydrodynamics. Comput. Fluids 64, 64–73 (2012)

    Article  MathSciNet  Google Scholar 

  85. Vilar, F., Maire, P.H., Abgrall, R.: Cell-centered discontinuous Galerkin discretizations for two-dimensional scalar conservation laws on unstructured grids and for one-dimensional Lagrangian hydrodynamics. Comput. Fluids 46(1), 498–604 (2010)

    Article  MathSciNet  Google Scholar 

  86. Vilar, F., Maire, P.H., Abgrall, R.: A discontinuous Galerkin discretization for solving the two-dimensional gas dynamics equations written under total Lagrangian formulation on general unstructured grids. J. Comput. Phys. 276, 188–234 (2014)

    Article  MathSciNet  Google Scholar 

  87. von Neumann, J., Richtmyer, R.D.: A method for the calculation of hydrodynamics shocks. J. Appl. Phys. 21, 232–237 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  88. Yanilkin, Y.V., Goncharov, E.A., Kolobyanin, V.Y., Sadchikov, V.V., Kamm, J.R., Shashkov, M.J., Rider, W.J.: Multi-material pressure relaxation methods for Lagrangian hydrodynamics. Comput. Fluids 83, 137–143 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The presented research has been financed by the European Research Council (ERC) under the European Union’s Seventh Framework Programme (FP7/2007–2013) with the research project STiMulUs, ERC Grant Agreement No. 278267. The authors acknowledge PRACE for awarding us access to the SuperMUC supercomputer of the Leibniz Rechenzentrum (LRZ) in Munich, Germany.

The authors would like to thank the two anonymous referees for their constructive comments and suggestions, which definetely helped to improve the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Dumbser.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boscheri, W., Dumbser, M. An Efficient Quadrature-Free Formulation for High Order Arbitrary-Lagrangian–Eulerian ADER-WENO Finite Volume Schemes on Unstructured Meshes. J Sci Comput 66, 240–274 (2016). https://doi.org/10.1007/s10915-015-0019-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0019-2

Keywords

Navigation