Skip to main content
Log in

Analysis of a Staggered Discontinuous Galerkin Method for Linear Elasticity

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We develop a staggered discontinuous Galerkin method for linear elasticity problems and prove its a priori error estimates. In our variational formulation the symmetry of the stress tensor is imposed weakly via Lagrange multipliers but the resulting numerical stress tensor is strongly symmetric. Optimal a priori error estimates are obtained and the error estimates are robust in nearly incompressible materials. Numerical experiments illustrating our theoretical analysis are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Amara, M., Thomas, J.M.: Equilibrium finite elements for the linear elastic problem. Numer. Math. 33(4), 367–383 (1979). doi:10.1007/BF01399320

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, D.N., Awanou, G., Winther, R.: Finite elements for symmetric tensors in three dimensions. Math. Comp. 77(263), 1229–1251 (2008). doi:10.1090/S0025-5718-08-02071-1

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2001/02). doi:10.1137/S0036142901384162

  4. Arnold, D.N., Brezzi, F., Douglas, J.J.: PEERS: a new mixed finite element for plane elasticity. J. Appl. Math. Jpn. 1, 347–367 (1984). doi:10.1016/j.jfa.2010.02.007

    Article  MathSciNet  MATH  Google Scholar 

  5. Arnold, D.N., Douglas, J.J., Gupta, C.P.: A family of higher order mixed finite element methods for plane elasticity. Numer. Math. 45(1), 1–22 (1984). doi:10.1007/BF01379659

    Article  MathSciNet  MATH  Google Scholar 

  6. Arnold, D.N., Falk, R.S., Winther, R.: Mixed finite element methods for linear elasticity with weakly imposed symmetry. Math. Comp. 76(260), 1699–1723 (2007). doi:10.1090/S0025-5718-07-01998-9. (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  7. Arnold, D.N., Winther, R.: Mixed finite elements for elasticity. Numer. Math. 92(3), 401–419 (2002). doi:10.1007/s002110100348

    Article  MathSciNet  MATH  Google Scholar 

  8. Babuška, I., Suri, M.: Locking effects in the finite element approximation of elasticity problems. Numer. Math. 62(4), 439–463 (1992). doi:10.1007/BF01396238

    Article  MathSciNet  MATH  Google Scholar 

  9. Bacuta, C., Bramble, J.H.: Regularity estimates for solutions of the equations of linear elasticity in convex plane polygonal domains. Z. Angew. Math. Phys. 54(5), 874–878 (2003). doi:10.1007/s00033-003-3211-4. Special issue dedicated to Lawrence E. Payne

    Article  MathSciNet  MATH  Google Scholar 

  10. Boffi, D., Brezzi, F., Fortin, M.: Reduced symmetry elements in linear elasticity. Commun. Pure Appl. Anal. 8(1), 95–121 (2009). doi:10.3934/cpaa.2009.8.95

    MathSciNet  MATH  Google Scholar 

  11. Brezzi, F., Douglas, J.J., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47(2), 217–235 (1985). doi:10.1007/BF01389710

    Article  MathSciNet  MATH  Google Scholar 

  12. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, vol. 15. Springer, NewYork (1992)

    Google Scholar 

  13. Chung, E.T., Engquist, B.: Optimal discontinuous Galerkin methods for the acoustic wave equation in higher dimensions. SIAM J. Numer. Anal. 47(5), 3820–3848 (2009). doi:10.1137/080729062

    Article  MathSciNet  MATH  Google Scholar 

  14. Cockburn, B., Gopalakrishnan, J., Guzmán, J.: A new elasticity element made for enforcing weak stress symmetry. Math. Comp. 79(271), 1331–1349 (2010). doi:10.1090/S0025-5718-10-02343-4

    Article  MathSciNet  MATH  Google Scholar 

  15. Cockburn, B., Shi, K.: Superconvergent HDG methods for linear elasticity with weakly symmetric stresses. IMA J. Numer. Anal. 33(3), 747–770 (2013). doi:10.1093/imanum/drs020

    Article  MathSciNet  MATH  Google Scholar 

  16. Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)

    Google Scholar 

  17. Farhloul, M., Fortin, M.: Dual hybrid methods for the elasticity and the Stokes problems: a unified approach. Numer. Math. 76(4), 419–440 (1997). doi:10.1007/s002110050270

    Article  MathSciNet  MATH  Google Scholar 

  18. Girault, V., Raviart, P.A.: Finite element methods for Navier-Stokes equations: Theory and algorithms, Springer Series in Computational Mathematics, vol. 5. Springer-Verlag, Berlin (1986). doi:10.1007/978-3-642-61623-5

    Google Scholar 

  19. Gopalakrishnan, J., Guzmán, J.: A second elasticity element using the matrix bubble. IMA J. Numer. Anal. 32(1), 352–372 (2012). doi:10.1093/imanum/drq047

    Article  MathSciNet  MATH  Google Scholar 

  20. Gurtin, M.E.: An introduction to continuum mechanics, Mathematics in Science and Engineering, vol. 158. Academic Press Inc.(Harcourt Brace Jovanovich Publishers), New York (1981)

    Google Scholar 

  21. Guzmán, J.: A unified analysis of several mixed methods for elasticity with weak stress symmetry. J. Sci. Comput. 44(2), 156–169 (2010). doi:10.1007/s10915-010-9373-2

    Article  MathSciNet  MATH  Google Scholar 

  22. Guzmán, J., Neilan, M.: Symmetric and conforming mixed finite elements for plane elasticity using rational bubble functions. Numer. Math. 126(1), 153–171 (2014). doi:10.1007/s00211-013-0557-1

    Article  MathSciNet  MATH  Google Scholar 

  23. Johnson, C., Mercier, B.: Some equilibrium finite element methods for two-dimensional elasticity problems. Numer. Math. 30(1), 103–116 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kim, H.H., Chung, E.T., Lee, C.S.: A staggered discontinuous Galerkin method for the Stokes system. SIAM J. Numer. Anal. 51(6), 3327–3350 (2013). doi:10.1137/120896037

    Article  MathSciNet  MATH  Google Scholar 

  25. Kim, K.Y.: Analysis of some low-order nonconforming mixed finite elements for linear elasticity problem. Numer. Methods. Partial. Differ. Equ. 22(3), 638–660 (2006). doi:10.1002/num.20114

    Article  MATH  Google Scholar 

  26. Morley, M.E.: A family of mixed finite elements for linear elasticity. Numer. Math. 55(6), 633–666 (1989). doi:10.1007/BF01389334

    Article  MathSciNet  MATH  Google Scholar 

  27. Qin, J.: On the convergence of some low order mixed finite elements for incompressible fluids. ProQuest LLC, Ann Arbor, MI (1994). Thesis (Ph.D.)-The Pennsylvania State University

  28. Qiu, W., Demkowicz, L.: Mixed \(hp\)-finite element method for linear elasticity with weakly imposed symmetry: stability analysis. SIAM J. Numer. Anal. 49(2), 619–641 (2011). doi:10.1137/100797539

    Article  MathSciNet  MATH  Google Scholar 

  29. Scott, L.R., Vogelius, M.: Conforming finite element methods for incompressible and nearly incompressible continua. In: Large-scale computations in fluid mechanics, Part 2 (La Jolla, Calif., 1983), Lectures in Appl. Math., vol. 22, pp. 221–244. Amer. Math. Soc., Providence, RI (1985)

  30. Soon, S.C., Cockburn, B., Stolarski, H.K.: A hybridizable discontinuous Galerkin method for linear elasticity. Int. J. Numer. Methods Eng. 80(8), 1058–1092 (2009). doi:10.1002/nme.2646

    Article  MathSciNet  MATH  Google Scholar 

  31. Stenberg, R.: Analysis of mixed finite elements methods for the Stokes problem: a unified approach. Math. Comp. 42(165), 9–23 (1984). doi:10.2307/2007557

    MathSciNet  MATH  Google Scholar 

  32. Stenberg, R.: A family of mixed finite elements for the elasticity problem. Numer. Math. 53(5), 513–538 (1988). doi:10.1007/BF01397550

    Article  MathSciNet  MATH  Google Scholar 

  33. Stenberg, R.: Two low-order mixed methods for the elasticity problem. In: The mathematics of finite elements and applications. VI (Uxbridge, 1987), pp. 271–280. Academic Press, London (1988)

  34. Stenberg, R.: Weakly symmetric mixed finite elements for linear elasticity. In: Abdulle, A., Deparis, S., Kressner, D., Nobile, F., Picasso, M. (eds.) Numerical Mathematics and Advanced Applications - ENUMATH 2013, Lecture Notes in Computational Science and Engineering, vol. 103, pp. 3–18. Springer International Publishing (2015). doi:10.1007/978-3-319-10705-9_1

  35. Valent, T.: Boundary Value Problems of Finite Elasticity, Springer Tracts in Natural Philosophy, vol. 31. Springer, New York (1988). doi:10.1007/978-1-4612-3736-5. Local theorems on existence, uniqueness, and analytic dependence on data

    Book  Google Scholar 

  36. de Veubeke, B.M.F.: Stress function approach. In: Proceedings of the World Congress on Finite Element Methods in Structural Mechanics, vol. 5, pp. J.1–J.51 (1975)

  37. Zhang, S.: A new family of stable mixed finite elements for the 3D Stokes equations. Math. Comp. 74(250), 543–554 (2005). doi:10.1090/S0025-5718-04-01711-9

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We are indebted to the anonymous referees for their helpful comments which significantly improved the presentation and quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeonghun J. Lee.

Additional information

Jeonghun J. Lee was partially supported by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013) ERC Grant agreement 339643. Hyea Hyun Kim was supported by the Korea Science and Engineering Foundation (KOSEF) Grant funded by the Korean Government(MOST) (2011-0023354).

Appendix

Appendix

In this appendix we provide some lemmas which are used in the proof of our main results.

Let \({\mathcal {M}}_h\) be a shape regular triangulation of a bounded domain \(\varOmega \).

For simplicity, we use \(\Vert \cdot \Vert _r\) for norms instead of \(\Vert \cdot \Vert _{r,M}\) when it is clear that functions are clearly defined on \(M\).

Lemma 6

Let \(T_i, i=1,ldots, d+1\), be subsimplices of \(M \in {\mathcal {M}}_h\) obtained by the barycentric subdivision. For a given \(k \ge 1\), let

$$\begin{aligned} V_{M,k}&= \{ v \in H^1\left( M; {\mathbb {R}}^d\right) \,:\, v|_{T_i} \in {\mathcal {P}}_k\left( T_i; {\mathbb {R}}^d\right) \text { for } 1 \le i \le d+1, v|_{\partial M} = 0 \}, \end{aligned}$$
(57)
$$\begin{aligned} Q_{M,k}&= \left\{ p \in L^2(M) \,:\, p|_{T_i} \in {\mathcal {P}}_k(T_i), \int _M p \,dx = 0 \right\} . \end{aligned}$$
(58)

Then there exists \(\beta >0\) independent of \(M \in {\mathcal {M}}_h\) such that

$$\begin{aligned} \inf _{0 \not = p \in Q_{M,k}} \sup _{0 \not = w \in V_{M,k+1}} \frac{ ({\text {div}}\, w , p)}{\Vert w \Vert _1 \Vert p \Vert _0} \ge \beta . \end{aligned}$$
(59)

Proof

Note that (59) is the inf-sup condition of mixed finite element method \((V_{M,k+1}, Q_{M,k})\) for the Stokes equation, so we simply refer to appropriate literature. When \(d = 2\) with \(k \ge 3\), (59) is obtained from the stability of Scott–Vogelius elements for the Stokes equation [29]. For \(d = 2\) with \(k = 1,2\), it is reported in [27]. When \(d=3\), it is proved in [37]. \(\square \)

Lemma 7

Suppose \(V_{M,k}\) and \(Q_{M,k}\) are defined as in (57) and (58). Then there exists \(c >0\) which only depends on the shape regularity of \({\mathcal {M}}_h\) and \(k\ge 1\) such that, for any given \(p \in Q_{M,k}\), there exists \(w \in V_{M,k+1}\) satisfying \({\text {div}}\, w = p\) and \(\Vert w \Vert _1 \le c \Vert p \Vert _0\).

Proof

Let \(M \in {\mathcal {M}}_h\) be fixed. Note that \({\text {div}}\, w \in Q_{M,k}\) for \(w \in V_{M,k+1}\), so we can regard \({\text {div}}\) as a linear map from \(V_{M, k+1}\) to \(Q_{M,k}\). This \({\text {div}}\) is surjective because, if not, then there exists \(0 \not = p \in Q_{M,k}\) such that \(({\text {div}}\, w, p) = 0\) for all \(w \in V_{M,k+1}\), but it contradicts (59). Suppose that \(\{ p_i \}_{i=1}^m\) is an orthonormal basis of \(Q_{M,k}\) in \(L^2(M)\) and define

$$\begin{aligned} \alpha _i := \inf _{w \in V_{M,k+1}, {\text {div}}\, w = p_i} \frac{({\text {div}}\, w, p_i)}{\Vert w \Vert _1}, \qquad \alpha _M := \min _{1 \le i \le m} \alpha _i. \end{aligned}$$
(60)

By finite dimensionality of the polynomial spaces \(V_{M,k+1}\) and \(Q_{M,k}\), there exists \(w_i \in V_{M,k+1}\) such that \({\text {div}}\, w_i = p_i\) and \(\Vert w_i \Vert _1 = \alpha _i^{-1}\). Suppose that a given \(0 \not = p \in Q_{M,k}\) can be expressed as \(p = \sum _{i=1}^m c_i p_i\) with coefficients \(c_i \in {\mathbb {R}}, 1 \le i \le m\). Then \(\Vert p \Vert _0^2 = \sum _{i=1}^m c_i^2\). If we take \(w = \sum _{i=1}^m c_i w_i\), then \({\text {div}}\, w = p\) and

$$\begin{aligned} \Vert w \Vert _1 \le \sum _{i=1}^m |c_i| \Vert w_i \Vert _1 = \sum _{i=1}^m \frac{|c_i|}{\alpha _i} \le \left( \sum _{i=1}^m c_i^2 \right) ^{\frac{1}{2}} \left( \sum _{i=1}^m \alpha _i^{-2} \right) ^{\frac{1}{2}} \le \Vert p \Vert _0 \alpha _M^{-1} \sqrt{m}, \end{aligned}$$

by the triangle inequality, the fact \(\Vert w_i \Vert _1 = \alpha _i^{-1}\) for \(1 \le i \le m\), the Cauchy-Schwarz inequality, and the definition of \(\alpha _M\) in (60). To complete proof, note that the \(\alpha _i\)’s in (60) are independent of the diameter of \(M\) by standard scaling argument. By shape regularity assumption of \({\mathcal {M}}_h\) and standard compactness argument (see, e.g., [31], Lemma3.1]), there exists \(\alpha >0\) depending only on the shape regularity of \({\mathcal {M}}_h\) and \(k\) such that \(\alpha \le \alpha _M\) for any \(M \in {\mathcal {M}}_h\). The proof is completed. \(\square \)

Let \({\mathbb {L}} = {\mathbb {V}}\) if \(d = 2\) and \({\mathbb {L}} = {\mathbb M}\) if \(d = 3\). For given \(k \ge 1\), we define \(\varXi _{M,0}\) as

$$\begin{aligned} \varXi _{M,0}&= \left\{ \xi \in H^1(M; {\mathbb {L}}) \,:\, \xi |_{T_i} \in {\mathcal {P}}_{k+1}(T_i;{\mathbb {L}}), 1 \le i \le d+1, \; \xi |_{\partial M} = 0 \right\} . \end{aligned}$$
(61)

We also define \(S\) and \(\chi \) as

$$\begin{aligned} S \begin{pmatrix} \xi _1 \\ \xi _2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \xi _1&\xi _2 \end{pmatrix} \quad \text {for } \xi \in \varXi _{M,0}, \quad \chi (r) = \begin{pmatrix} 0 &{} r \\ -r &{} 0 \end{pmatrix} \quad \text {for } r \in {\mathbb {R}}\qquad \text { if } d = 2, \\ S \xi = \frac{1}{2}\left( \xi ^T - ({\text {tr }}\xi ) \varvec{I}\right) \quad \text {for } \xi \in \varXi _{M,0}, \quad \chi \begin{pmatrix} r_1 \\ r_2 \\ r_3 \end{pmatrix} = \begin{pmatrix} 0 &{} -r_3 &{} r_2 \\ r_3 &{} 0 &{} -r_1 \\ -r_2 &{} r_1 &{} 0 \end{pmatrix} \quad \text {if } d = 3, \end{aligned}$$

where \(\xi ^T\) is the transpose of \(\xi \) and \(\varvec{I}\) is the identity \(3 \times 3\) matrix. Note that \(S\) and \(\chi \) are algebraic isomorphisms. One can verify by a direct computation that

$$\begin{aligned} {\text {skw }}{\text {curl }}\xi = \chi {\text {div}}\, S \xi , \qquad \xi \in \varXi _{M,0}. \end{aligned}$$
(62)

Lemma 8

Assume that \(\varXi _{M,0}\) is defined as in (61) for some \(k \ge 1\). If \(\zeta \in \varXi _{M,0}\), then \(({\text {curl }}\zeta ) n|_{\partial M} = 0\) for the unit normal vector field \(n\) on \(\partial M\).

Proof

If \(d = 2\), then \({\text {curl }}\zeta \) is the \(\pi /2\)-rotation of \({\text {grad}}\, \zeta \). Denoting by \(t\), the tangent vector obtained by \(\pi /2\)-rotation of the normal vector \(n\) on \(\partial M, ({\text {grad}}\, \zeta ) t = 0\) on \(\partial M\) because \(\zeta \) is vanishing on \(\partial M\). Then we can see that \(({\text {curl }}\zeta ) n = ({\text {grad}}\, \zeta ) t = 0\) on \(\partial M\).

When \(d = 3\), let \(\zeta _i, i=1,2,3\), be the \(i\)-th row of \(\zeta \). It suffices to show that \({\text {curl }}\zeta _i \cdot n \equiv 0\) on \(\partial M\). By the Stokes’ theorem, for any \(\phi \in C^1(\overline{M})\),

$$\begin{aligned} 0&= \int _M {\text {div}}\, ({\text {curl }}\zeta _i) \phi \,dx = \int _{\partial M} ({\text {curl }}\zeta _i \cdot n) \phi \,ds - \int _M ({\text {curl }}\zeta _i) \cdot {\text {grad}}\, \phi \,dx \\&= \int _{\partial M} ({\text {curl }}\zeta _i \cdot n) \phi \,ds + \int _{\partial M} (\zeta _i \times n) \cdot {\text {grad}}\, \phi \,ds - \int _M \zeta _i \cdot {\text {curl }}({\text {grad}}\, \phi ) \,dx \\&= \int _{\partial M} ({\text {curl }}\zeta _i \cdot n) \phi \,ds + \int _{\partial M} (\zeta _i \times n) \cdot {\text {grad}}\, \phi \,ds. \end{aligned}$$

Since \(\zeta _i \equiv 0\) on \(\partial M, \int _{\partial M} (\zeta _i \times n) \cdot {\text {grad}}\, \phi \,ds = 0\) and then \({\text {curl }}\zeta _i \cdot n \equiv 0\) on \(\partial M\) because \(\phi \in C^1(\overline{M})\) is arbitrary. \(\square \)

Lemma 9

For a given \(k \ge 1\), define \(\varGamma _{M,0}\) as

$$\begin{aligned} \varGamma _{M,0} = \left\{ \varvec{\eta } \in L^2(M; {\mathbb K}) \,:\, \varvec{\eta }|_{T_i} \in {\mathcal {P}}_k(T_i; {\mathbb K}), 1 \le i \le d+1, \int _M \varvec{\eta }\,dx = 0 \right\} , \end{aligned}$$

and recall the definition of \(\Sigma _{M,0}\) in (21) with same \(k\). For any \(\varvec{\eta } \in \varGamma _{M,0}\) there is \(\varvec{\tau } \in \Sigma _{M,0}\) such that \({\text {div}}\, \varvec{\tau } = 0, {\text {skw }}\varvec{\tau } = \varvec{\eta }\), and \(\Vert \varvec{\tau } \Vert _0 \le c \Vert \varvec{\eta } \Vert _0\) with \(c>0\) independent of \(M \in {\mathcal {M}}_h\).

Proof

We only prove the three dimensional case because the two dimensional one can be proved similarly. For the given \(k\), we consider \(V_{M,k+1}, Q_{M,k}\) as in (57), (58), and \(\varXi _{M,0}\) as in (61). By the definition of \(\chi \), note that \(\chi ^{-1} \varvec{\eta } \in L^2(M; {\mathbb {V}})\) for \(\varvec{\eta } \in \varGamma _{M,0}\) and each component of \(\chi ^{-1} \varvec{\eta }\) is in \(Q_{M,k}\). Applying Lemma 7 to each component of \(\chi ^{-1} \varvec{\eta }\), one can find \(\varvec{\xi } \in H^1(M; {\mathbb M})\) such that \({\text {div}}\, \varvec{\xi } = \chi ^{-1} \varvec{\eta }, \Vert \varvec{\xi } \Vert _1 \le c \Vert \varvec{\eta } \Vert _0\), and each row can be identified with an element in \(V_{M,k+1}\). If we set \(\varvec{\tau } = {\text {curl }}S^{-1} \varvec{\xi }\), then \({\text {div}}\, \varvec{\tau } = 0\) and also \(\varvec{\tau } \in \Sigma _{M,0}\) by Lemma 8 because \(S^{-1} \varvec{\xi } \in \varXi _{M,0}\). Furthermore, by (62) and the assumptions on \(\varvec{\xi }\),

$$\begin{aligned} {\text {skw }}\varvec{\tau }&= {\text {skw }}{\text {curl }}S^{-1} \varvec{\xi } = \chi {\text {div}}\, \varvec{\xi } = \varvec{\eta }, \\ \Vert \varvec{\tau } \Vert _0&= \Vert {\text {curl }}S^{-1} \varvec{\xi } \Vert _0 \le c \Vert \varvec{\xi } \Vert _1 \le c \Vert \varvec{\eta } \Vert _0. \end{aligned}$$

The proof is completed. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.J., Kim, H.H. Analysis of a Staggered Discontinuous Galerkin Method for Linear Elasticity. J Sci Comput 66, 625–649 (2016). https://doi.org/10.1007/s10915-015-0036-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0036-1

Keywords

Mathematics Subject Classification

Navigation