Skip to main content
Log in

Preasymptotic Error Analysis of High Order Interior Penalty Discontinuous Galerkin Methods for the Helmholtz Equation with High Wave Number

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A preasymptotic error analysis of the interior penalty discontinuous Galerkin (IPDG) method of high order for Helmholtz equation with the first order absorbing boundary condition in two and three dimensions is proposed. We derive the \(H^1\)- and \(L^2\)- error estimates with explicit dependence on the wave number k. In particular, it is shown that if \(k(kh)^{2p}\) is sufficiently small, then the pollution errors of IPDG method in \(H^1\)-norm are bounded by \(O(k(kh)^{2p})\), which coincides with the phase error of the finite element method obtained by existent dispersion analyses on Cartesian grids, where h is the mesh size, p is the order of the approximation space and is fixed. Numerical tests are provided to verify the theoretical findings and to illustrate great capability of the symmetric IPDG method in reducing the pollution effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ainsworth, M.: Discrete dispersion relation for hp-version finite element approximation at high wave number. SIAM J. Numer. Anal. 42, 553–575 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ainsworth, M.: Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods. J. Comput. Phys. 198, 106–130 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold, D.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arnold, D., Brezzi, F., Cockburn, B., Marini, D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aziz, A., Kellogg, R.: A scattering problem for the Helmholtz equation. Adv. Comput. Methods Partial Differ. Equ. III 1, 93–95 (1979)

    MathSciNet  Google Scholar 

  6. Babuška, I., Ihlenburg, F., Paik, E., Sauter, S.: A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution. Comput. Methods Appl. Mech. Eng. 128, 325–359 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Babuška, I., Sauter, S.: Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers? SIAM Rev. 42, 451–484 (2000)

    MathSciNet  MATH  Google Scholar 

  8. Babuška, I., Zlámal, M.: Nonconforming elements in the finite element method with penalty. SIAM J. Numer. Anal. 10, 863–875 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  9. Baker, G.: Finite element methods for elliptic equations using nonconforming elements. Math. Comput. 31, 44–59 (1977)

    MathSciNet  Google Scholar 

  10. Brenner, S., Scott, L.: The mathematical theory of finite element methods, 3rd edn. Springer, New York (2008)

    Book  MATH  Google Scholar 

  11. Bube, K., Strikwerda, J.: Interior regularity estimates for elliptic systems of difference equations. SIAM J. Numer. Anal. 20, 653–670 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. Burman, E., Ern, A.: Discontinuous Galerkin approximation with discrete variational principle for the nonlinear Laplacian. C. R. Math. 346, 1013–1016 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Burman, E., Wu, H., Zhu, L.: Continuous interior penalty finite element method for Helmholtz equation with high wave number: one dimensional analysis. Numer. Methods Part. Diff. Equ. (to appear). arXiv:1211.1424

  14. Chen, H., Lu, P., Xu, X.: A hybridizable discontinuous Galerkin method for the Helmholtz equation with high wave number. SIAM J. Numer. Anal. 51, 2166–2188 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chou, Y.-L.: Applications of discrete functional analysis to the finite difference method. International Academic Publishers, Beijing (1991)

    Google Scholar 

  16. Ciarlet, P.G.: The finite element method for elliptic problems. North-Holland, New York (1978)

    MATH  Google Scholar 

  17. Cummings, P., Feng, X.: Sharp regularity coefficient estimates for complex-valued acoustic and elastic Helmholtz equations. Math. Models Methods Appl. Sci. 16, 139–160 (2006)

  18. Demkowicz, L., Gopalakrishnan, J., Muga, I., Zitelli, J.: Wavenumber explicit analysis of a DPG method for the multidimensional Helmholtz equation. Comput. Methods Appl. Mech. Eng. 214, 126–138 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Deraemaeker, A., Babuška, I., Bouillard, P.: Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions. Int. J. Numer. Methods Eng. 46, 471–499 (1999)

    Article  MATH  Google Scholar 

  20. Di Pietro, D., Ern, A.: Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier–Stokes equations. Math. Comput. 79, 1303–1330 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Douglas Jr, J., Dupont, T.: Interior penalty procedures for elliptic and parabolic Galerkin methods, lecture notes in Physics, vol. 58. Springer, Berlin (1976)

    Google Scholar 

  22. Douglas Jr, J., Santos, J., Sheen, D.: Approximation of scalar waves in the space-frequency domain. Math. Models Methods Appl. Sci. 4, 509–531 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Du, Y., Wu, H.: Preasymptotic error analysis of higher order fem and cip-fem for Helmholtz equation with high wave number. SIAM J. Numer. Anal. 53, 782–804 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Engquist, B., Majda, A.: Radiation boundary conditions for acoustic and elastic wave calculations. Comm. Pure Appl. Math. 32, 313–357 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  25. Feng, X., Lewis, T., Neilan, M.: Discontinuous Galerkin finite element differential calculus and applications to numerical solutions of linear and nonlinear partial differential equations (2013). arXiv:1302.6984

  26. Feng, X., Wu, H.: Discontinuous Galerkin methods for the Helmholtz equation with large wave numbers. SIAM J. Numer. Anal. 47, 2872–2896 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Feng, X., Wu, H.: \(hp\)-discontinuous Galerkin methods for the Helmholtz equation with large wave number. Math. Comp. 80, 1997–2024 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gilbarg, D., Trudinger, N.: Elliptic partial differential equations of second order, vol. 224. Springer, Berlin (2001)

    MATH  Google Scholar 

  29. Harari, I.: Reducing spurious dispersion, anisotropy and reflection in finite element analysis of time-harmonic acoustics. Comput. Methods Appl. Mech. Eng. 140, 39–58 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hetmaniuk, U.: Stability estimates for a class of Helmholtz problems. Commun. Math. Sci. 5, 665–678 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ihlenburg, F.: Finite element analysis of acoustic scattering, applied mathematical sciences, vol. 132. Springer, New York (1998)

    Book  MATH  Google Scholar 

  32. Ihlenburg, F., Babuška, I.: Finite element solution of the Helmholtz equation with high wave number. I. The \(h\)-version of the FEM. Comput. Math. Appl. 30, 9–37 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ihlenburg, F., Babuška, I.: Finite element solution of the Helmholtz equation with high wave number. II. The \(h\)-\(p\) version of the FEM. SIAM J. Numer. Anal. 34, 315–358 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lord, G., Stuart, A.: Discrete gevrey regularity attractors and uppers-semicontinuity for a finite difference approximation to the ginzburg–landau equation. Numer. Funct. Anal. Optim. 16, 1003–1047 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  35. Melenk, J.: On generalized finite element methods, PhD thesis. University of Maryland, College Park (1995)

    Google Scholar 

  36. Melenk, J., Parsania, A., Sauter, S.: General DG-methods for highly indefinite Helmholtz problems. J. Sci. Comput. 57, 536–581 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Melenk, J.M., Sauter, S.: Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions. Math. Comp. 79, 1871–1914 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Melenk, J.M., Sauter, S.: Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation. SIAM J. Numer. Anal. 49, 1210–1243 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Monk, P.: Finite element methods for Maxwell’s equations. Oxford University Press, New York (2003)

    Book  MATH  Google Scholar 

  40. Rivière, B.: Discontinous Galerkin methods for solving elliptic and parabolic equations: theory and implementation. SIAM, Society for Industrial and Applied Mathematics, Philadelphia (2008)

    Book  MATH  Google Scholar 

  41. Rivière, B., Wheeler, M.F., Girault, V.: Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. I. Comput. Geosci. 3(1999), 337–360 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  42. Schatz, A.: An observation concerning Ritz–Galerkin methods with indefinite bilinear forms. Math. Comput. 28, 959–962 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  43. Shen, J., Wang, L.: Analysis of a spectral-Galerkin approximation to the Helmholtz equation in exterior domains. SIAM J. Numer. Anal. 45, 1954–1978 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Thompson, L.: A review of finite-element methods for time-harmonic acoustics. J. Acoust. Soc. Am. 119, 1315–1330 (2006)

    Article  Google Scholar 

  45. Thompson, L., Pinsky, P.: Complex wavenumber Fourier analysis of the p-version finite element method. Comput. Mech. 13, 255–275 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wu, H.: Pre-asymptotic error analysis of CIP-FEM and FEM for Helmholtz equation with high wave number. Part I: Linear version. IMA J. Numer. Anal. 34, 1266–1288 (2014)

  47. Zhu, L., Du, Y.: Pre-asymptotic error analysis of hp-Interior penalty discontinuous Galerkin methods for the Helmholtz equation with large wave number. Comput. Math. Appl. doi:10.1016/j.camwa.2015.06.007

  48. Zhu, L., Wu, H.: Pre-asymptotic error analysis of CIP-FEM and FEM for Helmholtz equation with high wave number. Part II: hp version. SIAM J. Numer. Anal. 51, 1828–1852 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zitelli, J., Muga, I., Demkowicz, L., Gopalakrishnan, J., Pardo, D., Calo, V.: A class of discontinuous Petrov-Galerkin methods. Part IV: the optimal test norm and time-harmonic wave propagation in 1D. J. Comput. Phys. 230, 2406–2432 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  50. Nitsche, Joachim A., Schatz, Alfred H.: Interior estimates for Ritz–Galerkin method. Math. Comput. 28, 937–958 (1974)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Haijun Wu for his valuable comments leading to an improvement of the original results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingxue Zhu.

Additional information

The work was partially supported by the National Natural Science Foundation of China Grant 11401272 and by the Natural Science Foundation of Jiangsu Province of China Grant BK20140105 and by the doctoral scientific research foundation of Jinling Institute of Technology Grant jit-b-201413.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Zhu, L. Preasymptotic Error Analysis of High Order Interior Penalty Discontinuous Galerkin Methods for the Helmholtz Equation with High Wave Number. J Sci Comput 67, 130–152 (2016). https://doi.org/10.1007/s10915-015-0074-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0074-8

Keywords

Navigation