Skip to main content
Log in

Convergence Analysis of the Standard Central Finite Difference Method for Poisson Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We consider the standard central finite difference method for solving the Poisson equation with the Dirichlet boundary condition. This scheme is well known to produce second order accurate solutions. From numerous tests, its numerical gradient was reported to be also second order accurate, but the observation has not been proved yet except for few specific domains. In this work, we first introduce a refined error estimate near the boundary and a discrete version of the divergence theorem. Applying the divergence theorem with the estimate, we prove the second order accuracy of the numerical gradient in arbitrary smooth domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ciarlet, P.: Introduction to Numerical Linear and Optimization. Cambridge Texts in Applied Mathematics, New York (1998)

    Google Scholar 

  2. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)

    Google Scholar 

  3. Gibou, F., Fedkiw, R., Cheng, L.-T., Kang, M.: A second-order-accurate symmetric discretization of the Poisson equation on irregular domains. J. Comput. Phys. 176, 205–227 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Harlow, F., Welch, J.: Numerical calculation of time-dependent viscous incompressible flow of fluids with free surfaces. Phys. Fluids 8, 2182–2189 (1965)

    Article  MATH  Google Scholar 

  5. Iserles, A.: A first course in numerical analysis of differential equations. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  6. Li, Z.-C., Hu, H.Y., Fang, Q., Yamamoto, T.: Superconvergence of solution derivatives for the Shortley–Weller difference approximation of Poisson’s equation II. Singularity problems. Numer. Funct. Anal. Optim. 24, 195–221 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Li, Z.-C., Hu, H.Y., Wang, S., Fang, Q.: Superconvergence of solution derivatives of the Shortley–Weller difference approximation to Poisson’s equation with singularities on polygonal domains. Appl. Numer. Math. 58, 689–704 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Matsunaga, N., Yamamoto, T.: The fast solution of Poisson’s and the biharmonic equations on irregular regions. J. Comput. Appl. Math. 116, 263–273 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ng, Y.-T., Chen, H., Min, C., Gibou, F.: Guidelines for Poisson solvers on irregular domains with Dirichlet boundary conditions using the ghost fluid method. J. Sci. Comput. 41, 300–320 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ng, Y.-T., Min, C., Gibou, F.: An efficient fluid–solid coupling algorithm for single-phase flows. J. Comput. Phys. 228, 8807–8829 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Purvis, J.W., Burkhalter, J.E.: Prediction of critical Mach number for store configurations. AIAA J. 17, 1170–1177 (1979)

    Article  Google Scholar 

  12. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing, New York (1996)

    MATH  Google Scholar 

  13. Shortley, G.H., Weller, R.: Numerical solution of Laplace’s equation. J. Appl. Phys. 9, 334–348 (1938)

    Article  MATH  Google Scholar 

  14. Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations. SIAM, Philadelphia (2004)

    Book  MATH  Google Scholar 

  15. Yoon, G., Min, C.: A review of the supra-convergences of Shortley–Weller method for Poisson equation. J. KSIAM 18, 51–60 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Yoon, G., Min, C.: Analyses on the finite difference method by Gibou et al. for Poisson equation. J. Comput. Phys. 280, 184–194 (2015)

  17. Yoon, G., Park, J., Min, C.: Convergence analysis on the Gibou–Min method for the Hodge projection. Commun. Math. Sci. (submitted to)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chohong Min.

Additional information

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2009-0093827).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, G., Min, C. Convergence Analysis of the Standard Central Finite Difference Method for Poisson Equation. J Sci Comput 67, 602–617 (2016). https://doi.org/10.1007/s10915-015-0096-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0096-2

Keywords

Mathematics Subject Classification

Navigation