Skip to main content
Log in

Convergence Analysis of the Parareal-Euler Algorithm for Systems of ODEs with Complex Eigenvalues

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Parareal is an iterative algorithm and is characterized by two propagators \(\mathscr {G}\) and \(\mathscr {F}\), which are respectively associated with large step size \(\varDelta T\) and small step size \(\varDelta t\), where \(\varDelta T=J\varDelta t\) and \(J\ge 2\) is an integer. The choice \(\mathscr {G}=\mathscr {F}=\)Backward-Euler denotes the simplest implicit parareal solver, which we call Parareal-Euler, and has been studied widely in recent years. For linear problem \(\mathbf {U}'(t)+\mathbf {A}\mathbf {U}(t)=\mathbf {g}(t)\) with \(\mathbf {A}\) being a symmetric positive definite matrix, this algorithm converges very fast and the convergence rate is insensitive to the change of J and \(\varDelta t\). However, for the case that the spectrum of \(\mathbf {A}\) contains complex values, no provable results are available in the literature so far. Previous studies based on numerical plotting show that we can not expect convergence for the Parareal-Euler algorithm on the whole right-hand side of the complex plane. Here, we consider a representative situation: \(\sigma (\mathbf {A})\subseteq \mathbf {D}(\theta ):=\left\{ (x,iy)\in \mathbf {C}: x\ge 0, |y|\le \tan (\theta )x\right\} \) with \(\theta \in (0, \frac{\pi }{2})\), i.e., the spectrum \(\sigma (A)\) is contained in a sectorial region. Spectrum distribution of this type arises naturally for semi-discretizing a wide rang of time-dependent PDEs, e.g., the Fokker-Planck equations. We derive condition, which is independent of J and depends on \(\theta \) only, to ensure convergence of the Parareal-Euler algorithm. Numerical results for initial value and time-periodic problems are provided to support our theoretical conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bal, G.: On the convergence and the stability of the parareal algorithm to solve partial differential equations. Lect. Notes Comput. Sci. Eng. 40, 426–432 (2003)

    MathSciNet  Google Scholar 

  2. Celledoni, E., Kvamsdal, T.: Parallelization in time for thermo-viscoplastic problems in extrusion of aluminium. Int. J. Numer. Methods Eng. 79(5), 576–598 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cortial, J., Farhat, C.: A time-parallel implicit method for accelerating the solution of nonlinear structural dynamics problems. Int. J. Numer. Methods Eng. 77(4), 451–470 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dai, X.Y., Maday, Y.: Stable parareal in time method for first- and second-order hyperbolic systems. SIAM J. Sci. Comput. 35(1), A52–A78 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dai, X.Y., Le Bris, C., Legoll, F., Maday, Y.: Symmetric parareal algorithms for Hamiltonian systems. M2AN Math. Model Numer. Anal. 47(3), 717–742 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Du, X.H., Sarkis, M., Schaerer, C.F., Szyld, D.B.: Inexact and truncated parareal-in-time Krylov subspace methods for parabolic optimal control problems. Electron. Trans. Numer. Anal. 40, 36–57 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Emmett, M., Minion, M.: Toward an efficient parallel in time method for partial differential equations. Commun. Appl. Math. Comput. Sci. 7, 105–132 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Farhat, C., Cortial, J., Dastillung, C., Bavestrello, H.: Time-parallel implicit integrators for the near-real-time prediction of linear structural dynamic responses. Int. J. Numer. Methods Eng. 67(5), 697–724 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Farhat, C., Chandesris, M.: Time-decomposed parallel time-integrators: theory and feasibility studies for fluid, structure, and fluid-structure applications. Int. J. Numer. Methods Eng. 58(9), 1397–1434 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fok, J.C.M., Guo, B.Y., Tang, T.: Combined Hermite spectral-finite difference method for the Fokker-Planck equation. Math. Comput. 71(240), 1497–1528 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gander, M.J., Vandewalle, S.: On the superlinear and linear convergence of the parareal algorithm. Lect. Notes Comput. Sci. Eng. 55, 291–298 (2005)

    Article  MathSciNet  Google Scholar 

  12. Gander, M.J., Jiang, Y.L., Song, B., Zhang, H.: Analysis of two parareal algorithms for time-periodic problems. SIAM J. Sci. Comput. 35(5), A2393–A2415 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gander, M.J., Vandewalle, S.: Analysis of the parareal time-parallel time-integration method. SIAM J. Sci. Comput. 29(2), 556–578 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gander, M.J., Hairer, E.: Analysis for parareal algorithms applied to Hamiltonian differential equations. J. Comput. Appl. Math. 259, 2–13 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gottlieb, D., Orszag, S.: Numerical analysis of spectral methods: theory and applications. In: CBMS-NSF Regional Conference Series in Applied Mathematics, 26. SIAM , Philadelphia (1977)

  16. He, L., He, M.: Parareal in time simulation of morphological transformation in cubic alloys with spatially dependent composition. Commun. Comput. Phys. 11(5), 1697–1717 (2012)

    Google Scholar 

  17. Haut, T., Wingate, B.: An asymptotic parallel-in-time method for highly oscillatory PDEs. SIAM J. Sci. Comput. 36(2), A693–A713 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, X.J., Tang, T., Xu, C.J.: Parallel in time algorithm with spectral-subdomain enhancement for Volterra integral equations. SIAM J. Numer. Anal. 51(3), 1735–1756 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Legoll, F., Lelièvre, T., Samaey, G.: A micro-macro parareal algorithm: application to singularly perturbed ordinary differential equations. SIAM J. Sci. Comput. 35(4), A1951–A1986 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lions, J.L., Maday, Y., Turinici, G.: A “parareal” in time discretization of PDE’s. C. R. Acad. Sci. Paris Sér. I Math. 332(7), 661–668 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Maday, Y., Riahi, M.K., Salomon, J.: Parareal in time intermediate targets methods for optimal control problems. In: Control and Optimization with PDE Constraints, pp. 79–92. Springer, Basel (2013)

  22. Maday, Y., Salomon, J., Turinici, G.: Monotonic parareal control for quantum systems. SIAM J. Numer. Anal. 45(6), 2468–2482 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mathew, T.R., Sarkis, M., Schaerer, C.E.: Analysis of block parareal preconditioners for parabolic optimal controal problems. SIAM J. Sci. Comput. 32(3), 1180–1200 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Minion, M.L.: A hybrid parareal spectral deferred corrections method. Appl. Math. Comput. Sci. 5(2), 265–301 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Reynolds-Barredo, J.M., Newman, D.E., Sanchez, R.: An analytic model for the convergence of turbulent simulations time-parallelized via the parareal algorithm. J. Comput. Phys. 255(255), 293–315 (2013)

    Article  MathSciNet  Google Scholar 

  26. Reynolds-Barredo, J.M., Newman, D.E., Sanchez, R., Samaddar, D., Berry, L.A., Elwasif, W.R.: Mechanisms for the convergence of time-parallelized, parareal turbulent plasma simulations. J. Comput. Phys. 231(23), 7851–7867 (2012)

    Article  Google Scholar 

  27. Samaddar, D., Newman, D.E., Sánchez, R.: Parallelization in time of numerical simulations of fully-developed plasma turbulence using the parareal algorithm. J. Comput. Phys. 229(18), 6558–6573 (2010)

    Article  MATH  Google Scholar 

  28. Shen, J., Wang, L.L.: Review article: some recent advances on spectral methods for unbounded domains. Commun. Comput. Phys. 5(2–4), 195–241 (2009)

    MathSciNet  Google Scholar 

  29. Tang, T.: The Hermite spectral method for Gaussian-type functions. SIAM J. Sci. Comput. 14, 594–606 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tang, T., Mckee, S., Reeks, M.W.: A spectral method for the numerical solutions of a kinetic equation describing the dispersion of small particles in a turbulent flow. J. Comput. Phys. 103, 222–230 (1991)

    Article  MATH  Google Scholar 

  31. Wu, S.L.: Convergence analysis of some second-order parareal algorithms. IMA J. Numer. Anal. (2014). doi:10.1093/imanum/dru031

  32. Wu, S.L., Shi, B.C., Huang, C.M.: Parareal-Richardson algorithm for solving nonlinear ODEs and PDEs. Commun. Comput. Phys. 6(4), 883–902 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the anonymous referees for the careful reading of a preliminary version of the manuscript and their valuable suggestions and comments, which greatly improved the quality of this paper. This work was supported by the NSF of China (11301362, 11371157, 91130003), the NSF of Technology & Education of Sichuan Province (2014JQ0035,15ZA0220), the project of key laboratory of bridge non-destruction detecting and computing (2013QZY01) and the NSF of SUSE (2015LX01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Lin Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, SL. Convergence Analysis of the Parareal-Euler Algorithm for Systems of ODEs with Complex Eigenvalues. J Sci Comput 67, 644–668 (2016). https://doi.org/10.1007/s10915-015-0100-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0100-x

Keywords

Mathematics Subject Classification

Navigation