Skip to main content
Log in

Numerical Study of SUPG and LPS Methods Combined with Higher Order Variational Time Discretization Schemes Applied to Time-Dependent Linear Convection–Diffusion–Reaction Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper considers the numerical solution of time-dependent linear convection–diffusion–reaction equations. We shall employ combinations of streamline-upwind Petrov–Galerkin and local projection stabilization methods in space with the higher order variational time discretization schemes. In particular, we consider time discretizations by discontinuous Galerkin methods and continuous Galerkin–Petrov methods. Several numerical tests have been performed to assess the accuracy of combinations of spatial and temporal discretization schemes. Furthermore, the dependence of the results on the stabilization parameters of the spatial discretizations are discussed. In addition, the long-time behavior of overshoots and undershoots is studied. The efficient solution of the obtained systems of linear equations by GMRES methods with multigrid preconditioners will be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ahmed, N., Matthies, G., Tobiska, L., Xie, H.: Discontinuous Galerkin time stepping with local projection stabilization for transient convection–diffusion–reaction problems. Comput. Methods Appl. Mech. Eng. 200, 1747–1756 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aziz, A.K., Monk, P.: Continuous finite elements in space and time for the heat equation. Math. Comput. 52(186), 255–274 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Becker, R., Braack, M.: A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38(4), 173–199 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Becker, R., Braack, M.: A two-level stabilization scheme for the Navier–Stokes equations. In: Feistauer, M., Dolejší, V., Knobloch, P., Najzar, K. (eds.) Numerical Mathematics and Advanced Applications, pp. 123–130. Springer, Berlin (2004)

    Chapter  Google Scholar 

  5. Bochev, P.B., Gunzburger, M.D., Shadid, J.N.: Stability of the SUPG finite element method for transient advection–diffusion problems. Comput. Methods Appl. Mech. Eng. 193(23–26), 2301–2323 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Braack, M., Burman, E.: Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method. SIAM J. Numer. Anal. 43(6), 2544–2566 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burman, E.: Consistent SUPG-method for transient transport problems: stability and convergence. Comput. Methods Appl. Mech. Eng. 199(17–20), 1114–1123 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burman, E., Smith, G.: Analysis of the space semi-discretized SUPG method for transient convection–diffusion equations. Math. Models Methods Appl. Sci. 21(10), 2049–2068 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Studies in Mathematics and its Applications, vol. 4. North-Holland Publishing Co., Amsterdam (1978)

    Google Scholar 

  10. Codina, R.: Comparison of some finite element methods for solving the diffusion–convection–reaction equation. Comput. Methods Appl. Mech. Eng. 156(1–4), 185–210 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Computational Differential Equations. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  12. Eriksson, K., Johnson, C., Thomée, V.: Time discretization of parabolic problems by the discontinuous Galerkin method. RAIRO Modél. Math. Anal. Numér. 19(4), 611–643 (1985)

    MathSciNet  MATH  Google Scholar 

  13. Harari, I., Hauke, G.: Semidiscrete formulations for transient transport at small time steps. Int. J. Numer. Methods Fluids 54(6–8), 731–743 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hsu, M.-C., Bazilevs, Y., Calo, V.M., Tezduyar, T.E., Hughes, T.J.R.: Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput. Methods Appl. Mech. Eng. 199(13–16), 828–840 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hughes, T.J.R., Brooks, A.N.: A multidimensional upwind scheme with no crosswind diffusion. In: Finite Element Methods for Convection Dominated Flows (Papers, Winter Ann. Meeting Amer. Soc. Mech. Engrs., New York, 1979), vol. 34 of AMD, pp 19–35. Am. Soc. Mech. Eng. (ASME), New York (1979)

  16. Hughes, T.J.R., Franca, L.P., Mallet, M.: A new finite element formulation for computational fluid dynamics. VI. Convergence analysis of the generalized SUPG formulation for linear time-dependent multidimensional advective–diffusive systems. Comput. Methods Appl. Mech. Eng. 63(1), 97–112 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hussain, S., Schieweck, F., Turek, S.: Higher order Galerkin time discretizations and fast multigrid solvers for the heat equation. J. Numer. Math. 19(1), 41–61 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hussain, S., Schieweck, F., Turek, S.: A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations. Open Numer. Methods J. 4, 35–45 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. John, V., Knobloch, P.: On spurious oscillations at layers diminishing (SOLD) methods for convection–diffusion equations. I. A review. Comput. Methods Appl. Mech. Eng. 196(17–20), 2197–2215 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. John, V., Knobloch, P.: On the performance of SOLD methods for convection–diffusion problems with interior layers. Int. J. Comput. Sci. Math. 1(2–4), 245–258 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. John, V., Knobloch, P.: On spurious oscillations at layers diminishing (SOLD) methods for convection–diffusion equations. II. Analysis for \(P_1\) and \(Q_1\) finite elements. Comput. Methods Appl. Mech. Eng. 197(21–24), 1997–2014 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. John, V., Matthies, G.: MooNMD—a program package based on mapped finite element methods. Comput. Vis. Sci. 6(2–3), 163–169 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. John, V., Novo, J.: Error analysis of the SUPG finite element discretization of evolutionary convection–diffusion-reaction equations. SIAM J. Numer. Anal. 49(3), 1149–1176 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. John, V., Novo, J.: On (essentially) non-oscillatory discretizations of evolutionary convection–diffusion equations. J. Comput. Phys. 231(4), 1570–1586 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. John, V., Schmeyer, E.: Finite element methods for time-dependent convection–diffusion–reaction equations with small diffusion. Comput. Methods Appl. Mech. Eng. 198(3–4), 475–494 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. John, V., Schmeyer, E.: On finite element methods for 3D time-dependent convection–diffusion–reaction equations with small diffusion. In: Hegarty, A., Kopteva, N., O’ Riordan, E., Stynes, M. (eds.), BAIL 2008—Boundary and Interior Layers, vol. 69 of Lecture Notes in Computational Science and Engineering, pp 173–181. Springer (2009)

  27. Lube, G., Weiss, D.: Stabilized finite element methods for singularly perturbed parabolic problems. Appl. Numer. Math. 17(4), 431–459 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Matthies, G., Schieweck, F.: Higher order variational time discretizations for nonlinear systems of ordinary differential equations. Preprint 23/2011, Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg (2011)

  29. Matthies, G., Skrzypacz, P., Tobiska, L.: A unified convergence analysis for local projection stabilisations applied to the Oseen problem. M2AN. Math. Model. Numer. Anal. 41(4), 713–742 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Matthies, G., Skrzypacz, P., Tobiska, L.: Stabilization of local projection type applied to convection–diffusion problems with mixed boundary conditions. Electron. Trans. Numer. Anal. 32, 90–105 (2008)

    MathSciNet  MATH  Google Scholar 

  31. Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973)

  32. Roos, H.-G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations, Volume 24 of Springer Series in Computational Mathematics, 2nd edn. Springer, Berlin (2008)

    MATH  Google Scholar 

  33. Saad, Y.: A flexible inner–outer preconditioned GMRES algorithm. SIAM J. Sci. Comput. 14(2), 461–469 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  34. Schieweck, F.: \(A\)-stable discontinuous Galerkin–Petrov time discretization of higher order. J. Numer. Math. 18(1), 25–57 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Schötzau, D., Schwab, C.: An \(hp\) a priori error analysis of the DG time-stepping method for initial value problems. Calcolo 37(4), 207–232 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  36. Schötzau, D., Schwab, C.: \(hp\)-discontinuous Galerkin time-stepping for parabolic problems. C. R. Acad. Sci. Paris Sér. I Math. 333(12), 1121–1126 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, Volume 25 of Springer Series in Computational Mathematics, 2nd edn. Springer, Berlin (2006)

    Google Scholar 

Download references

Acknowledgments

The authors like to thank the German research foundation (DFG) for supporting the research under the Grant MA 4713/2-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveed Ahmed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, N., Matthies, G. Numerical Study of SUPG and LPS Methods Combined with Higher Order Variational Time Discretization Schemes Applied to Time-Dependent Linear Convection–Diffusion–Reaction Equations. J Sci Comput 67, 988–1018 (2016). https://doi.org/10.1007/s10915-015-0115-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0115-3

Keywords

Mathematics Subject Classification

Navigation