Skip to main content
Log in

Two Mixed Finite Element Methods for Time-Fractional Diffusion Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Based on spatial conforming and nonconforming mixed finite element methods combined with classical L1 time stepping method, two fully-discrete approximate schemes with unconditional stability are first established for the time-fractional diffusion equation with Caputo derivative of order \(0<\alpha <1\). As to the conforming scheme, the spatial global superconvergence and temporal convergence order of \(O(h^2+\tau ^{2-\alpha })\) for both the original variable u in \(H^1\)-norm and the flux \(\vec {p}=\nabla u\) in \(L^2\)-norm are derived by virtue of properties of bilinear element and interpolation postprocessing operator, where h and \(\tau \) are the step sizes in space and time, respectively. At the same time, the optimal convergence rates in time and space for the nonconforming scheme are also investigated by some special characters of \(\textit{EQ}_1^{\textit{rot}}\) nonconforming element, which manifests that convergence orders of \(O(h+\tau ^{2-\alpha })\) and \(O(h^2+\tau ^{2-\alpha })\) for the original variable u in broken \(H^1\)-norm and \(L^2\)-norm, respectively, and approximation for the flux \(\vec {p}\) converging with order \(O(h+\tau ^{2-\alpha })\) in \(L^2\)-norm. Numerical examples are provided to demonstrate the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhuang, P., Liu, F., Anh, V., Turner, I.: New solution and analytical techniques of the implicit numerical method for the sub-diffusion equation. SIAM J. Numer. Anal. 46, 1079–1095 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Li, C., Wang, Y.: Numerical algorithm based on Adomian decompodition for fractional differential equations. Comput. Math. Appl. 57, 1672–1681 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Huang, J., Nie, N., Tang, Y.: A second order finite difference-spectral method for space fractional diffusion equations. Sci. China Math. 57, 1303–1317 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bu, W., Tang, Y., Yang, J.: Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations. J. Comput. Phys. 276, 26–38 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Zhao, Y., Bu, W., Huang, J., Liu, D., Tang, Y.: Finite element method for two-dimensional space-fractional advection-dispersion equations. Appl. Math. Comput. 257, 553–565 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Deng, W.: Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 47, 204–226 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Mainardi, F., Luchko, Y., Pagnini, G.: The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4, 153–192 (2001)

    MathSciNet  MATH  Google Scholar 

  8. Momani, S., Odibat, Z., Erturk, V.S.: Generalized differential transform method for solving a space- and time-fractional diffusion-wave equation. Phys. Lett. A 370, 379–387 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bu, W., Tang, Y., Wu, Y., Yang, J.: Finite difference/finite element method for two-dimensional space and time fractional Bloch-Torrey equations. J. Comput. Phys. 293, 264–279 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yu, Q., Liu, F., Turner, I., Burrage, K.: Numerical investigation of three types of space and time fractional Bloch–Torrey equation in 2D. Cent. Eur. J. Phys. 11, 646–665 (2013)

    Google Scholar 

  11. Nochetto, R.H., Otarola, E., Salgado, A.J.: A PDE approach to space-time fractional parabolic problems. arXiv:1404.0068v3 (2014)

  12. Yang, Q., Turner, I., Liu, F., Ilis, M.: Novel numerical methods for solving the time-space fractional diffusion equation in two dimensions. SIAM J. Sci. Comput. 33, 1159–1180 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, X., Xu, C.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47, 2108–2131 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bhrawy, A., Doha, E., Ezz-Eldien, S., Abdelkawy, M.: A numerical technique based on the shifted Legendre polynomials for solving the time-fractional coupled KdV equations. Calcolo (2015). doi:10.1007/s10092-014-0132-x

    MathSciNet  MATH  Google Scholar 

  16. Huang, J., Tang, Y., Vázquez, L., Yang, J.: Two finite difference schemes for time fractional diffusion-wave equation. Numer. Algorithms 64, 707–720 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cui, M.: Convergence analysis of high-order compact alternating direction implicit scheme for the two-dimensional time fractional diffusion equation. Numer. Algorithms 62, 383–409 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zeng, F.: Second-order stable finite difference schemes for the time-fractional diffusion-wave equation. J. Sci. Comput. 65, 411–430 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ren, J., Sun, Z.: Numerical algorithm with high spatial accuracy for the fractional diffusion-wave equation with neumann boundary conditions. J. Sci. Comput. 56, 381–408 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhao, X., Sun, Z.: Compact Crank–Nicolson schemes for a class of fractional Cattaneo equation in inhomogeneous medium. J. Sci. Comput. 62, 747–771 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sweilam, N., Khader, M., Mahdy, A.: Crank–Nicolson finite difference method for solving time-fractional diffusion equation. J. Fract. Calc. Appl. 2, 1–9 (2012)

    MATH  Google Scholar 

  22. Zeng, F., Li, C., Liu, F., Turner, I.: Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy. SIAM J. Sci. Comput. 47, A55–A78 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jin, B., Lazarov, R., Zhou, Z.: Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J. Numer. Anal. 51, 445–466 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jin, B., Lazarov, R., Pasciak, J., Zhou, Z.: Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion. IMA J. Numer. Anal. 2, 1–9 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Jiang, Y., Ma, J.: High-order finite element methods for time-fractional partial differential equations. J. Comput. Appl. Math. 235, 3285–3290 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mustapha, K., Abdallah, B., Furati, K.: A discontinuous Petrov-Galerkin method for time-fractional diffusion problems. SIAM J. Numer. Anal. 52, 2512–2529 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, Q., Gu, Y., Zhuang, P., Liu, F., Nie, Y.: An implicit RBF meshless approach for time fractional diffusion equations. Comput. Mech. 48, 1–12 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Cockburn, B., Mustapha, K.: A hybridizable discontinuous Galerkin method for fractional diffusion problems. Numer. Math. 130, 293–314 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mustapha, K., Nour, M., Cockburn, B.: Convergence and superconvergence analyses of HDG methods for time fractional diffusion problems. arXiv:1412.2098v1 (2015)

  30. Zhang, X., Liu, J., Wen, J., Tang, B., He, Y.: Analysis for one-dimensional time-fractional Tricomi-type equations by LDG methods. Numer. Algorithms 63, 143–164 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Xu, Q., Zheng, Z.: Discontinuous Galerkin method for time fractional diffusion equation. J. Inf. Comput. Sci. 10, 3253–3264 (2013)

    Article  Google Scholar 

  32. Sun, Z., Wu, X.: A fully discrete scheme for a diffusion wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jin, B., Lazarov, R., Zhou, Z.: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. (2015). doi:10.1093/imanum/dru063

  34. Gao, G., Sun, Z.: A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 230, 586–595 (2011)

  35. Ren, J., Sun, Z., Zhao, X.: Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 232, 456–467 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Liu, Y., Du, Y., Li, H., Wang, J.: An \(H^1-\)Galerkin mixed finite element method for time fractional reaction-diffusion equation. J. Appl. Math. Comput. 47, 103–117 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lin, Q., Lin, J.: Finte Element Methods: Accuracy and Improvement. Science Press, Beijing (2006)

    Google Scholar 

  38. Lin, Q., Yan, N.: The Construction and Analysis of High Efficiency Finite Element Methods. Hebei University Press, Hebei (1996). (in Chinese)

    Google Scholar 

  39. Chen, W., Lin, Q.: Approximation of an eigenvalue problem associated with the Stokes problem by the stream function-vorticity-pressure method. Appl. Math. 51, 73–88 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lin, Q., Tobiska, L., Zhou, A.: Superconvergence and extrapolation of nonconformimg low order finite elements applied to the poisson equation. IMA J. Numer. Anal. 25, 160–181 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lin, Q., Xie, H.H.: Asymptotic error expansion and Richardson extrapolation of eigenvalue approximations for second order elliptic problems by the mixed finite element method. Appl. Numer. Math. 59, 1884–1893 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Li, M., Lin, Q., Zhang, S.: Extrapolation and superconvergence of the Steklov eigenvalue problem. Adv. Comput. Math. 33, 25–44 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Shi, D., Wang, P., Zhao, Y.: Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schröinger equation. Appl. Math. Lett. 38, 129–4134 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Huang, Y., Li, J., Wu, C., Yang, W.: Superconvergence analysis for linear tetrahedral edge elements. J. Sci. Comput. 62, 122–145 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Shi, D., Zhao, Y.: Quasi-Wilson nonconforming element approximation for nonlinear dual phase lagging heat conduction equations. Appl. Math. Comput. 243, 454–464 (2014)

    MathSciNet  MATH  Google Scholar 

  46. Chabaud, B., Cockburn, B.: Uniform-in-time superconvergence of HDG methods for the heat equation. Math. Comput. 81, 107–129 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. Cockburn, B., Gopalakrishnan, J., Sayas, F.-J.: A projection-based error analysis of HDG methods. Math. Comput. 79, 1351–1367 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Mustapha, K., Mclean, W.: Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J. Numer. Anal. 51, 491–515 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research is supported by National Natural Science Foundation of China (Grant Nos. 11101381 and 11371357) and Outstanding Young Talents Training Plan by Xuchang University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifa Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Chen, P., Bu, W. et al. Two Mixed Finite Element Methods for Time-Fractional Diffusion Equations. J Sci Comput 70, 407–428 (2017). https://doi.org/10.1007/s10915-015-0152-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0152-y

Keywords

Navigation