Skip to main content
Log in

An Efficient Implicit Compact Streamfunction Velocity Formulation of Two Dimensional Flows

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we develop a class of implicit, unconditionally stable compact schemes for solving coupled fourth order and second order semilinear streamfunction and temperature equations respectively representing unsteady Navier–Stokes (N–S) equations for incompressible viscous fluid flows. The governing equations are presented in a generic form from which specific equations are obtained for several two dimensional (2D) incompressible viscous fluid flow problems. The streamfunction and the temperature equations are all solved iteratively in a coupled system of equations for the four field variables consisting of streamfunction, two velocities and temperature. The discretized form of biharmonic equation in streamfunction consists on 5-point stencil of streamfunction and is found to be second-order accurate both for spatially and temporally. In addition, we have considered two strategies for the discretization of the energy equation, which are second order accurate 5-point and fourth order accurate 9-point compact scheme. The formulation is made efficient by decreasing the computational complexity and is used to solve several 2D time dependent well studied benchmark problems. It is seen to efficiently capture both time wise and steady-state solutions of the N–S equations with Dirichlet as well as Neumann boundary conditions. The results obtained using our proposed scheme are in excellent agreement with the results available in the literature and they clearly establish the efficiency and the accuracy of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Atlas, I., Dym, J., Gupta, M.M., Manohar, R.: Multigrid solution of automatically generated high-order discretizations for the biharmonic equation. SIAM J. Sci. Comput. 19, 1575–1585 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Basak, T., Roy, S., Paul, T., Pop, I.: Natural convection in a square cavity filled with a porous media: effects of various thermal boundary conditions. Int. J. Heat Mass Trans. 49, 1430–1441 (2006)

    Article  MATH  Google Scholar 

  3. Bejan, A., Kraus, A.D.: Heat Transfer Handbook. Wiley, NewYork (2003)

    Google Scholar 

  4. Ben-Artzi, M., Chorev, I., Croisille, J.P., Fishelov, D.: A compact difference scheme for the biharmonic equation in planar irregular domains. SIAM J. Numer. Anal. 47(4), 3087–3108 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ben-Artzi, M., Chorev, I., Croisille, J.P., Fishelov, D.: Navier–Stokes Equations in Planar Domains. Imperial College Press, London (2013)

    Book  MATH  Google Scholar 

  6. Ben-Artzi, M., Croisille, J.P., Fishelov, D., Trachtenberg, S.: A pure-compact scheme for the streamfunction formulation of Navier–Stokes equations. J. Comput. Phys. 205, 640–664 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blohm, C., Kuhlmann, H.C.: The two-sided lid-driven cavity: experiments on stationary and time dependent flows. J. Fluid Mech. 450, 67–95 (2002)

    Article  MATH  Google Scholar 

  8. Botella, O., Peyret, R.: Benchmark spectral results on the lid-driven cavity flow. Comput. Fluids 27, 421–433 (1998)

    Article  MATH  Google Scholar 

  9. Bruneau, C.H., Saad, M.: The 2D lid-driven cavity problem revisited. Comupt. Fluids 35, 326–348 (2005)

    Article  MATH  Google Scholar 

  10. De Vahl Davis, G.: Natural convection of air in a square cavity: A bench mark numerical solution. Int. J. Numer. Methods Fluids 3, 249–264 (1983)

    Article  MATH  Google Scholar 

  11. De Vahl Davis, G., Jones, I.P.: Natural convection in a square cavity: a comparison exercise. Int. J. Numer. Methods Fluids 3, 227–248 (1983)

    Article  MATH  Google Scholar 

  12. Dennis, S.C.R., Hudson, J.D.: Compact \(h^4\) finite difference approximations to operators of Navier–Stokes type. J. Comput. Phys. 85, 390–416 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ekaterinaris, A.J.: Implicit high resolution compact scheme for gas dynamics and aerodynamics. J. Comput. Phys. 156, 272–299 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ghia, U., Ghia, K.N., Shin, C.T.: High Re-solution for incompressible Navier–Stokes equation and a multigrid method. J. Comput. Phys. 48, 387–411 (1982)

    Article  MATH  Google Scholar 

  15. Gresho, P.M.: Incompressible fluid dynamics: some fundamental formulation issues. Ann. Rev. Fluid Mech. 23, 413–453 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gupta, M.M.: High accuracy solutions of incompressible Navier–Stokes equations. J. Comput. Phys. 93, 343–357 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gupta, M.M.: Discretization error estimates for certain splitting procedures for solving first biharmonic boundary value problem. SIAM J. Numer. Anal. 12, 364–377 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gupta, M.M., Kalita, J.C.: A new paradigm for solving Navier–Stokes equation: streamfunction-velocity formulations. J. Comput. Phys. 207, 52–68 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gupta, M.M., Manohar, R.P.: Direct solution of biharmonic equation using noncoupled approach. J. Comput. Phys. 33, 236–248 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gupta, M.M., Manohar, R.P., Stephenson, J.W.: A singel cell high order scheme for the convection-diffusion equation with variable coefficients. Int. J. Numer. Methods Fluids 4, 641–651 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hirsh, R.S.: Higher-order accurate difference solutions of fluid mechanics problems by a compact differencing technque. J. Comput. Phys. 19, 90–109 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kalita, J.C., Dalal, D.C., Dass, A.K.: Fully compact higher-order computation of steady-state natural convection in a square cavity. Phys. Rev. E 64(6), 066703–066713 (2001)

    Article  Google Scholar 

  23. Kolesnikov, A., Baker, A.J.: An efficient high-order Taylor weak statement formulation for the Navier–Stokes equations. J. Comput. Phys. 173, 549–574 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kuhlmann, H.C., Wanschura, M., Rath, H.J.: Flow in two-sided lid-driven cavities: non-uniqueness, instability and cellular structures. J. Comput. Phys. 336, 267–299 (1997)

    MathSciNet  MATH  Google Scholar 

  25. Kupferman, R.A.: A central-difference scheme for a pure stream function formulation of incompressible viscous flows. SIAM J. Sci. Comput. 23(1), 1–18 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lamb, H.: Hydrodynamics, 6th edn. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  27. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, M., Tang, T., Fornberg, B.: A compact fourth order finite difference scheme for the steady incompressible Navier–Stokes equations. Int. J. Numer. Meth. Fluids 20, 1137–1151 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mackinnon, R.J., Johnson, R.W.: Differential equation based representation of truncation errors for accurate numerical solution. Int. J. Numer. Methods Fluids 13, 739–757 (1991)

    Article  MATH  Google Scholar 

  30. Markatos, N.C., Pericleous, K.A.: Laminar and turbulent natural convection in an enclosed cavity. Int. J. Heat Mass Transf. 27, 755–772 (1984)

    Article  MATH  Google Scholar 

  31. Minev, P., Guermond, J.L.: Start-up flow in a three dimensional lid-driven cavity by means of massively parallel direction splitting algorithm. Int. J. Numer. Methods Fluids 68(7), 856–871 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pandit, S.K., Kalita, J.C., Dalal, D.C.: A transient higher order compact schemes for incompressible viscous flows on geometries beyond rectangular. J. Comput. Phys. 225, 1100–1124 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pandit, S.K.: On the use of compact streamfunction-velocity formulation of steady Navier–Stokes equations on geometries beyond rectangular. J. Sci. Comput. 36, 219–242 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pandit, S.K., Chattopadhyay, A.: Higher order compact computations of transient natural convection in a deep cavity with porous medium. Int. J. Heat Mass Transf. 75, 624–636 (2014)

    Article  Google Scholar 

  35. Peng, Y.F., Shiau, Y.H., Hwang, R.R.: Transition in a 2D lid-driven cavity flow. Comput. Fluids 32, 337–352 (2003)

    Article  MATH  Google Scholar 

  36. Perumal, D.A., Dass, A.K.: Simulation of incompressible flows in two-sided lid-driven cavities Part I—FDM. CFD Lett. 2(1), 13–24 (2010)

    Google Scholar 

  37. Sengupta, T.K., Ganeriwal, G., De, S.: Analysis of central and upwind compact schemes. J. Comput. Phys. 192(2), 677–694 (2003)

    Article  MATH  Google Scholar 

  38. Spotz, W.F.: Accuracy and performance of numerical wall boundary conditions for the 2D incompressible stream-function vorticity. Int. J. Numer. Methods Fluids 28, 737–757 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. Stephenson, J.W.: Single cell discretizations of order two and four for biharmonic problems. J. Comput. Phys. 55, 65–80 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tannehill, J.C., Anderson, D.A., Pletcher, R.H.: Computational Fluid Mechanics and Heat Transfer. Hemisphere, New York (1984)

    MATH  Google Scholar 

  41. Tian, Z.F., Yu, P.X.: An efficient compact finite difference scheme for solving the streamfunction formulation of the incompressible Navier–Stokes equation. J. Comput. Phys. 230, 6404–6419 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Van Der Vorst, H.: BiCGSTAB: a fast and smoothly converging variant of BiCG for the solution of nonsymmetric linear systems. SIAM J. Sci. Comput. 13, 631–644 (1992)

    Article  MATH  Google Scholar 

  43. Yu, P.X., Tian, Z.F.: Compact computations based on a streamfunction-velocity formulation of two-dimensional steady laminar natural convection in a square cavity. Phys. Rev. E 85, 036703 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

Authors sincerely acknowledge Dr. Dalia Fishelov (fishelov@gmail.com) for some valuable discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapan K. Pandit.

Appendices

Appendix 1

The coefficients of Eq. (27) are listed as follows:

$$\begin{aligned}&A_{i-1,j}= \displaystyle k^{4}(lh^{2}-12a\mu {\Delta t}+gh^2\mu \Delta t);\quad A_{i,j-1}= \displaystyle h^{4}(lk^{2}-12c\mu {\Delta t}+gk^2\mu \Delta t);\\&A_{i,j}= \displaystyle {-2lh^{2}k^{2}(h^{2}+k^{2})+24\mu {\Delta t}(ak^{4}+ch^{4})-2gh^2k^2(h^2+k^2)\mu \Delta t};\\&A_{i+1,j}= \displaystyle k^{4}(lh^{2}-12a\mu {\Delta t}+gh^2\mu \Delta t);\quad A_{i,j+1}= \displaystyle h^{4}(lk^{2}-12c\mu {\Delta t}+gk^2\mu \Delta t);\\&A_{i-1,j}^{'}= \displaystyle k^{4}(lh^{2}-12a(\mu -1){\Delta t}+gh^2(\mu -1)\Delta t);\\&A_{i,j-1}^{'}= \displaystyle h^{4}(lk^{2}-12c(\mu -1){\Delta t}+gk^2(\mu -1)\Delta t);\\&A_{i,j}^{'}= \displaystyle {-2lh^{2}k^{2}(h^{2}+k^{2})-2gh^2k^2(h^2+k^2)(\mu -1) \Delta t+24(\mu -1){\Delta t}(ak^{4}+ch^{4})};\\&A_{i+1,j}^{'}= \displaystyle k^{4}(lh^{2}-12a(\mu -1){\Delta t}+gh^2(\mu -1)\Delta t);\\&A_{i,j+1}^{'}= \displaystyle h^{4}(lk^{2}-12c(\mu -1){\Delta t}+gh^2(\mu -1)\Delta t);\\&R_{i+k_1,j+k_2}=\mu \displaystyle {\Delta t}r_{i+k_1,j+k_2};\quad R_{i+k_1,j+k_2}^{'}=(1-\mu )\displaystyle {\Delta t}r_{i+k_1,j+k_2};\\&P_{i+k_1,j+k_2}=\mu \displaystyle {\Delta t}p_{i+k_1,j+k_2};\quad P_{i+k_1,j+k_2}^{'}=(1-\mu )\displaystyle {\Delta t}p_{i+k_1,j+k_2}; \end{aligned}$$

with

$$\begin{aligned}&r_{i-1,j-1}=\displaystyle {\frac{b}{4}h^{2}k^{3}};\quad r_{i,j-1}=\displaystyle h^{2}k(12ch^{2}-bk^{2}-2ekh^{2});\\&r_{i+1,j-1}=\displaystyle {\frac{b}{4}h^{2}k^{3}};\quad r_{i-1,j}=\displaystyle {-eh^{2}k^{4}};\\&r_{i,j}=\displaystyle {-2eh^{2}k^{2}(h^{2}+k^{2})};\quad r_{i+1,j}=\displaystyle {-eh^{2}k^{4}};\\&r_{i-1,j+1}=\displaystyle {-\frac{b}{4}h^{2}k^{3}};\quad r_{i,j+1}=\displaystyle h^{2}k(-12ch^{2}+bk^{2}-2ekh^{2});\\&r_{i+1,j+1}=\displaystyle {-\frac{b}{4}h^{2}k^{3}}; \end{aligned}$$

and

$$\begin{aligned}&p_{i-1,j-1}=\displaystyle {-\frac{b}{4}h^{3}k^{2}}; \quad p_{i,j-1}=\displaystyle {\frac{d}{4}h^{4}k^{2}};\\&p_{i+1,j-1}=\displaystyle {\frac{b}{4}h^{3}k^{2}}; \quad p_{i-1,j}=\displaystyle {hk^{2}(-12ak^{2}+bh^{2}+2dhk^{2})};\\&p_{i,j}= \displaystyle {-2dh^{2}k^{2}(h^{2}+k^{2})};\quad p_{i+1,j}=\displaystyle {hk^{2}(12ak^{2}-bh^{2}+2dhk^{2})};\\&p_{i-1,j+1}=\displaystyle {-\frac{b}{4}h^{3}k^{2}};\quad p_{i,j+1}=\displaystyle {dh^{4}k^{2}};\\&p_{i+1,j+1}=\displaystyle {\frac{b}{4}h^{3}k^{2}}. \end{aligned}$$

Appendix 2

The coefficients of Eq. (30) are listed as follows:

$$\begin{aligned} \gamma ^{*}_{i,j}= & {} \frac{\gamma _{i,j}-2\delta _{x}\alpha _{i,j}}{\alpha _{i,j}},\nonumber \\ \nu ^{*}_{i,j}= & {} \frac{\nu _{i,j}-2\delta _{y}\beta _{i,j}}{\beta _{i,j}},\nonumber \\ L_{i,j}= & {} \alpha _{i,j}+\frac{h^{2}}{12}\bigg [\bigg (\delta ^{2}_{x}\alpha _{i,j} +2\delta _{x}\gamma _{i,j}\bigg )+\gamma ^{*}_{i,j}\bigg (\delta _{x}\alpha _{i,j}+\gamma _{i,j}\bigg )\bigg ] +\frac{k^{2}}{12} \bigg [\nu ^{*}_{i,j}\delta _{y}\alpha _{i,j}+\delta ^{2}_{y}\alpha _{i,j}\bigg ], \nonumber \\ M_{i,j}= & {} \beta _{i,j}+\frac{h^{2}}{12} \bigg [\gamma ^{*}_{i,j}\delta _{\xi }\beta _{i,j}+\delta ^{2}_{\xi }\beta _{i,j}\bigg ]+\frac{k^{2}}{12} \bigg [\bigg (\delta ^{2}_{\eta }\beta _{i,j} +2\delta _{\eta }\nu _{i,j}\bigg )+\nu ^{*}_{i,j}\bigg (\delta _{\eta }\beta _{i,j}+\nu _{i,j}\bigg )\bigg ], \nonumber \\ N_{i,j}= & {} \gamma _{i,j}+ \frac{h^{2}}{12}\bigg [\delta ^{2}_{\xi }\gamma _{i,j} +\gamma ^{*}_{i,j}\delta _{\xi }\gamma _{i,j}\bigg ]+\frac{k^{2}}{12}\bigg [\delta ^{2}_{\eta }\gamma _{i,j}+ \nu ^{*}_{i,j}\delta _{\eta }\gamma _{i,j}\bigg ],\nonumber \\ O_{i,j}= & {} \nu _{i,j} +\frac{h^{2}}{12}\bigg [\delta ^{2}_{\xi }\nu _{i,j}+ \gamma ^{*}_{i,j}\delta _{\xi }\nu _{i,j}\bigg ]+ \frac{k^{2}}{12}\bigg [\delta ^{2}_{\eta }\nu _{i,j} +\nu ^{*}_{i,j}\delta _{\eta }\nu _{i,j}\bigg ],\nonumber \\ G_{i,j}= & {} \frac{h^{2}}{12}\bigg [2\delta _{x}\nu _{i,j}+\gamma ^{*}_{i,j}\nu _{i,j}\bigg ] +\frac{k^{2}}{12}\bigg [2\delta _{y}\gamma _{i,j}+ \nu ^{*}_{i,j}\gamma _{i,j}\bigg ],\nonumber \\ X_{i,j}= & {} h^{2}\beta _{i,j}+k^{2}\alpha _{i,j},\\ Y_{i,j}= & {} h^{2}\nu _{i,j}+k^{2}(2\delta _{y}\alpha _{i,j}\nu ^{*}_{i,j}\alpha _{i,j}),\\ Z_{i,j}= & {} h^{2}(2\delta _{x}\beta _{i,j}+\gamma ^{*}_{i,j}\beta _{i,j})+k^{2}\gamma _{i,j}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandit, S.K., Karmakar, H. An Efficient Implicit Compact Streamfunction Velocity Formulation of Two Dimensional Flows. J Sci Comput 68, 653–688 (2016). https://doi.org/10.1007/s10915-015-0154-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0154-9

Keywords

Navigation