Skip to main content
Log in

High Order Boundary Conditions for High Order Finite Difference Schemes on Curvilinear Coordinates Solving Compressible Flows

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In the present paper, high order boundary conditions for high order finite difference schemes on curvilinear coordinates are implemented and analyzed. The finite difference scheme employed in the present paper is a conservative scheme on a finite volume type grid arrangement for which the implementation of the boundary conditions is characterized by a proper evaluation of the numerical fluxes at the boundaries. Simple extrapolation procedures dealing with both the inviscid and viscous fluxes at the boundary are proposed. Specifically, for the inviscid fluxes, a characteristic-variable-based extrapolation procedure is adopted, which effectively reduces the numerical reflection at the far-field boundaries. The emphasis of the present paper is to design straightforward and efficient numerical boundary closure procedures which are capable of achieving high order of accuracy near the boundaries. Special attention is paid to the influence of the extrapolation accuracy on the overall accuracy of the scheme. Numerical results show that the finite difference scheme can achieve its nominal order accuracy when the extrapolation accuracy is sufficiently high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Thompson, K.W.: Time-dependent boundary conditions for hyperbolic systems. J. Comput. Phys. 68, 1–24 (1987)

    Article  Google Scholar 

  2. Thompson, K.W.: Time-dependent boundary conditions for hyperbolic systems II. J. Comput. Phys. 89, 439–461 (1990)

    Article  Google Scholar 

  3. Poinsot, T.J., Lele, S.K.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104–139 (1992)

    Article  Google Scholar 

  4. Kim, J.W., Lee, D.J.: Generalized characteristic boundary conditions for computational aeroacoustics, Part 2. AIAA J. 42(1), 47–55 (2004)

    Article  Google Scholar 

  5. Chen, D.X., Zha, G.C.: Implicit application of the non-reflective boundary conditions for Navier–Stokes equations in generalized coordinates. Int. J. Numer. Methods Fluids 50, 767–793 (2006)

    Article  Google Scholar 

  6. landmann, B., Haselbacher, A., Chao, J., Yu, C.: Characteristic boundary conditions for compressible viscous flow on curvilinear grids. AIAA paper, 2010-1084

  7. Baum, M., Poinsot, T.J., Thévenin, D.: Accurate boundary conditions for multi-component reactive flows. J. Comput. Phys. 176, 247–261 (1994)

    Google Scholar 

  8. Okong’o, N., Bellan, J.: Consistent boundary conditions for multi-component real gas mixtures based on characteristic waves. J. Comput. Phys. 176, 330–344 (1994)

    Article  Google Scholar 

  9. Yoo, C.S., Im, H.G.: Characteristic boundary conditions for simulations of compressible reacting flows with multidimensional, viscous, and reaction effects. Combust. Theor. Model. 11, 259–286 (2007)

    Article  Google Scholar 

  10. Carpenter, M.H., Gottlieb, D., Abarbanel, S.: Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact scheme. J. Comput. Phys. 111, 220–236 (1994)

    Article  Google Scholar 

  11. Mattsson, K., Svärd, M., Nordström, J.: Stable and accurate artificial dissipation. J. Sci. Comput. 21, 57–79 (2004)

    Article  Google Scholar 

  12. Svärd, M., Nordström, J.: On the order of accuracy for difference approximations of initial-boundary value problems. J. Comput. Phys. 218, 333–352 (2006)

    Article  Google Scholar 

  13. Svärd, M., Nordström, J.: A stable high-order finite difference scheme for the compressible Navier-Stokes equations, wall boundary conditions. J. Comput. Phys. 227, 4805–4824 (2008)

    Article  Google Scholar 

  14. Svärd, M., Mattsson, K., Nordström, J.: Steady state computations using summation-by-part operators. J. Sci. Comput. 24, 79–95 (2005)

    Article  Google Scholar 

  15. Svärd, M., Carpenter, M., Nordström, J.: A stable high order finite difference scheme for the compressible Navier–Stokes equations, far-field boundary conditions. J. Comput. Phys. 225, 1020–1038 (2007)

    Article  Google Scholar 

  16. Bodony, D.J.: Accuracy of the simultaneous-approximation-term boundary condition for time-dependent problems. J. Sci. Comput. 43, 118–133 (2010)

    Article  Google Scholar 

  17. Gustafsson, B.: The convergence rate for difference approximations to mixed initial boundary value problems. Math. Comput. 49, 396–406 (1975)

    Article  Google Scholar 

  18. Thomas, J.L., Salas, M.D.: Far-field boundary conditions for transonic lifting solutions to the Euler equations. AIAA J. 24, 1074–1080 (1993)

    Article  Google Scholar 

  19. Colonius, T.: Numerically nonreflecting boundary and interface conditions for compressible flow and aeroacoustic computations. AIAA J. 35, 1126–1133 (1997)

    Article  Google Scholar 

  20. Hagstrom, T., Nordström, J.: Analysis of extrapolation boundary conditions for the linearized Euler equations. Appl. Numer. Math. 44, 95–108 (2003)

    Article  Google Scholar 

  21. Shen, Y.Q., Zha, G.C., Wang, B.Y.: Improvement of stability and accuracy of implicit WENO scheme. AIAA J. 47, 331–344 (2009)

    Article  Google Scholar 

  22. Pirozzoli, S.: Conservative hybrid compact-WENO schemes for shock-turbulence interaction. J. Comput. Phys. 178, 81–117 (2002)

    Article  Google Scholar 

  23. Chung, T.J.: Computational Fluid Dynamics, 2nd edn. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  24. Vinokur, M.: An analysis of finite-difference and finite-volume formulations of conservation laws. J. Comput. Phys. 81, 1–52 (1989)

    Article  Google Scholar 

  25. Shen, Y.Q., Yang, B.Y., Zha, G.C.: Implicit WENO scheme and high order viscous formulas for compressible flows. AIAA paper, 2007–4431

  26. Visbal, M.R., Gaitonde, D.V.: On the use of high-order finite-difference schemes on curvilinear and deforming meshes. J. Comput. Phys. 181, 155–185 (2002)

    Article  Google Scholar 

  27. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing scheme II. J. Comput. Phys. 83, 32–78 (1989)

    Article  Google Scholar 

  28. Jameson, A., Turkel, E.: Implicit scheme and LU- decompositions. Math. Comput. 37, 385–397 (1981)

    Google Scholar 

  29. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  Google Scholar 

  30. Ren, Y.X., Liu, M., Zhang, H.X.: A characteristic-wise compact WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 192, 330–344 (2003)

    Article  Google Scholar 

  31. Sun, Z.S., Ren, Y.X., Zhang, S.Y., Yang, Y.C.: High-resolution finite difference schemes using curvilinear coordinate grids for DNS of compressible turbulent flow over wavy walls. Comput. Fluids 45, 84–91 (2011)

    Article  Google Scholar 

  32. Sun, Z.S., Ren, Y.X.: The development of the characteristic-wise hybrid compact-WENO scheme for solving the Euler and Navier–Stokes equations. CFD Rev. 2010, 279–297 (2010)

    Google Scholar 

  33. Thomas, P.D., Lombard, C.K.: Geometrical conservation law and its application to flow computations on moving grids. AIAA J. 17(10), 1030–1037 (1979)

    Article  Google Scholar 

  34. Hixon, R.: Numerically consistent strong conservation grid motion for finite difference schemes. AIAA J. 38(9), 1586–1593 (2000)

    Article  Google Scholar 

  35. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  Google Scholar 

  36. Osher, S., Fedkiw, R.: Level set methods and dynamic implicit surfaces. Appl. Math. Sci. 152, 152–154 (2003)

    Google Scholar 

  37. Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207, 439–471 (2005)

    Article  Google Scholar 

  38. Lukáĉvá-Medvid ová, M., Saibertová, J., Warnecke, G.: Finite volume evolution Galerkin methods for nonlinear hyperbolic systems. J. Comput. Phys. 183, 533–562 (2002)

    Article  Google Scholar 

  39. Nordström, J., Svärd, M.: Well-posed boundary conditions for the Navier–Stokes equations. SIAM J. Numer. Anal. 43(3), 1231–1255 (2005)

    Article  Google Scholar 

  40. Dolejší, V., Feistauer, M.: A semi-implicit discontinuous Galerkin finite element method for the numerical solution of inviscid compressible flow. J. Comput. Phys. 198, 724–746 (2004)

    Google Scholar 

  41. Michalak, C., Ollivier-Gooch, C.: Accuracy preserving limiter for the high-order accurate solution of the Euler equations. J. Comput. Phys. 228, 8693–8711 (2009)

    Article  Google Scholar 

  42. Prosser, R.: Improved boundary conditions for the direct numerical simulation of turbulent subsonic flows, I. Inviscid flows. J. Comput. Phys. 207, 736–768 (2005)

    Article  Google Scholar 

  43. Daru, V., Tenaud, C.: Evaluation of TVD high resolution schemes for unsteady viscous shocked flows. Comput. Fluids 30, 89–113 (2001)

    Article  Google Scholar 

  44. Sun, Z.S., Ren, Y.X., Larriaq, C., Zhang, S.Y., Yang, Y.C.: A class of finite difference schemes with low dispersion and controllable dissipation for DNS of compressible turbulence. J. Comput. Phys. 230, 4616–4635 (2011)

    Article  Google Scholar 

  45. Coleman, G.N., Kim, J., Moser, R.D.: A numerical study of turbulent supersonic isothermal-wall channel flow. J. Fluid Mech. 305, 159–183 (1995)

    Article  Google Scholar 

  46. Wei, L., Pollard, A.: Direct numerical simulation of compressible turbulent channel flows using the discontinuous Galerkin method. Comput. Fluids 47, 85–100 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Nature Science Foundation of China (Grant No. 11302250).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-xin Ren.

Appendix: The Extrapolation Formulas for the BCECV

Appendix: The Extrapolation Formulas for the BCECV

See Tables 3, 4 and 5.

Table 3 \({\phi _{1/2}} = \sum \nolimits _{m = 1}^p {{\alpha _m}{\phi _m}} +O{\left( {\Delta x} \right) ^p}, \, p\) is the order accuracy of the extrapolation formulas
Table 4 \({\phi _0} = {\beta _0}\phi _{1/2}^* + \sum \nolimits _{m = 1}^{q-1} {{\beta _m}{\phi _m}} + O{\left( {\Delta x} \right) ^q}, \, n\) is the order accuracy of the extrapolation formulas
Table 5 \({\phi _{0}} = \sum \nolimits _{m = 1}^q {{\gamma _m}{\phi _m}} + O{\left( {\Delta x} \right) ^q}, \, q\) is the order accuracy of the extrapolation formulas

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Zs., Ren, Yx., Zha, Bl. et al. High Order Boundary Conditions for High Order Finite Difference Schemes on Curvilinear Coordinates Solving Compressible Flows. J Sci Comput 65, 790–820 (2015). https://doi.org/10.1007/s10915-015-9988-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-9988-4

Keywords

Navigation