Skip to main content
Log in

A Posteriori Error Analysis of the Discontinuous Galerkin Method for Two-Dimensional Linear Hyperbolic Conservation Laws on Cartesian Grids

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we provide the first a posteriori error analysis of the discontinuous Galerkin (DG) method for solving the two-dimensional linear hyperbolic conservation laws on Cartesian grids. The key ingredients in our error analysis are the recent optimal superconvergence results proved in Cao et al. (SIAM J Numer Anal 53:1651–1671, 2015). We first prove that the DG solution converges in the \(L^2\)-norm to a Radau interpolating polynomial under mesh refinement. The order of convergence is proved to be \(p+2\), when tensor product polynomials of degree at most p are used. Then we show that the actual error can be divided into a significant part and a less significant part. The significant part of the DG error is spanned by two \((p+1)\)-degree right Radau polynomials in the x and y directions. The less significant part converges to zero at \({\mathcal {O}}\left( h^{p+2}\right) \). These results are used to construct simple, efficient and asymptotically exact a posteriori error estimates. Superconvergence towards the right Radau interpolating polynomial is used to prove that, for smooth solutions, our a posteriori DG error estimates converge at a fixed time to the true spatial errors in the \(L^2\)-norm at \({\mathcal {O}}\left( h^{p+2}\right) \) rate. Finally, we prove that the global effectivity indices in the \(L^2\)-norm converge to unity at \({\mathcal {O}}(h)\) rate. Our proofs are valid for arbitrary regular Cartesian meshes using tensor product polynomials of degree at most p and for both the periodic and Dirichlet boundary conditions. Several numerical experiments are performed to validate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1965)

    MATH  Google Scholar 

  2. Adjerid, S., Devine, K.D., Flaherty, J.E., Krivodonova, L.: A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems. Comput. Methods Appl. Mech. Eng. 191, 1097–1112 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adjerid, S., Massey, T.C.: A posteriori discontinuous finite element error estimation for two-dimensional hyperbolic problems. Comput. Methods Appl. Mech. Eng. 191, 5877–5897 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ainsworth, M., Oden, J.T.: A posteriori Error Estimation in Finite Element Analysis. John Wiley, New York (2000)

    Book  MATH  Google Scholar 

  5. Baccouch, M.: Asymptotically exact a posteriori LDG error estimates for one-dimensional transient convection–diffusion problems. Appl. Math. Comput. 226, 455–483 (2014)

    MathSciNet  Google Scholar 

  6. Baccouch, M.: Global convergence of a posteriori error estimates for a discontinuous Galerkin method for one-dimensional linear hyperbolic problems. Int. J. Numer. Anal. Model. 11, 172–192 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Bangerth, W., Rannacher, R.: Adaptive Finite Element Methods for Differential Equations. Birkhäuser Verlag, Berlin (2003)

    Book  MATH  Google Scholar 

  8. Biswas, R., Devine, K., Flaherty, J.E.: Parallel adaptive finite element methods for conservation laws. Appl. Numer. Math. 14, 255–284 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cao, W., Shu, C.-W., Yang, Y., Zhang, Z.: Superconvergence of discontinuous Galerkin methods for two-dimensional hyperbolic equations. SIAM J. Numer. Anal. 53(4), 1651–1671 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam (1978)

    MATH  Google Scholar 

  11. Cockburn, B., Dong, B., Guzman, J.: Optimal convergence of the original DG method for the transport-reaction equation on special meshes. SIAM J. Numer. Anal. 46, 1250–1265 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cockburn, B., Dong, B., Guzman, J., Qian, J.: Optimal convergence of the original DG method on special meshes for variable transport velocity. SIAM J. Numer. Anal. 48, 133–146 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cockburn, B., Kanschat, G., Perugia, I., Schötzau, D.: Superconvergence of the local discontinuous Galerkin method for elliptic problems on cartesian grids. SIAM J. Numer. Anal. 39, 264–285 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cockburn, B., Karniadakis, G., Shu, C.-W.: The development of discontinuous Galerkin methods, In: Discontinuous Galerkin Methods: Theory, Computation and Applications, Part i: Overview. Lecture Notes in Computational Science and Engineering, vol. 11, pp. 3–50 (2000)

  15. Cockburn, B., Karniadakis, G.E., Shu, C.W.: Discontinuous Galerkin methods theory. In: Computation and Applications, Lecture Notes in Computational Science and Engineering, vol. 11, Springer, Berlin (2000)

  16. Cockburn, B., Shu, C.W.: TVB Runge–Kutta local projection discontinuous Galerkin methods for scalar conservation laws II: General framework. Math. Comput. 52, 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  17. Cockburn, B., Shu, C.W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dong, B., Shu, C.-W.: Analysis of a local discontinuous Galerkin method for linear time-dependent fourth-order problems. SIAM J. Numer. Anal. 47, 3240–3268 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Computational Differential Equations. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  20. Flaherty, J., Loy, R., Shephard, M., Teresco, J.: Software for the parallel adaptive solution of conservation laws by discontinuous Galerkin methods. In: Cockburn, B., Karniadakis, G., Shu, C.-W. (eds.) Discontinuous Galerkin Methods. Lecture Notes in Computational Science and Engineering, vol. 11, pp. 113–123. Springer, Berlin (2000)

  21. Flaherty, J.E., Loy, R., Shephard, M.S., Szymanski, B.K., Teresco, J.D., Ziantz, L.H.: Adaptive local refinement with octree load-balancing for the parallel solution of three-dimensional conservation laws. J. Parallel Distrib. Comput. 47, 139–152 (1997)

    Article  MATH  Google Scholar 

  22. Johnson, C., Pitkäranta, J.: An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comput. 47, 285–312 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lesaint, P., Raviart, P.: On a finite element method for solving the neutron transport equations. In: de Boor, C. (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations. Academic Press, New York (1974)

    Google Scholar 

  24. Peterson, T.E.: A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation. SIAM J. Numer. Anal. 28(1), 133–140 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  25. Reed, W.H., Hill, TR.: Triangular mesh methods for the neutron transport equation, Tech. Rep. LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos (1973)

  26. Remacle, J.-F., Flaherty, J.E., Shephard, M.S.: An adaptive discontinuous Galerkin technique with an orthogonal basis applied to compressible flow problems. SIAM Rev. 45, 53–72 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Richter, G.: An optimal-order error estimate for discontinuous Galerkin method. Math. Comput. 50, 75–88 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rivière, B., Wheeler, M., Girault, V.: A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39, 902–931 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Verfürth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh Refinement Techniques. Wiley-Teubner, Chichester (1996)

    MATH  Google Scholar 

  30. Zhang, T., Li, Z.: Optimal error estimate and superconvergence of the DG method for first-order hyperbolic problems. J. Comput. Appl. Math. 235, 144–153 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the two anonymous reviewers for the valuable comments and suggestions which improve the quality of the paper. This research was supported by the University Committee on Research and Creative Activity (UCRCA Proposal 2015-01-F) at the University of Nebraska at Omaha.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahboub Baccouch.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Ethical statement

The author agrees that this manuscript has followed the rules of ethics presented in the journal’s Ethical Guidelines for Journal Publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baccouch, M. A Posteriori Error Analysis of the Discontinuous Galerkin Method for Two-Dimensional Linear Hyperbolic Conservation Laws on Cartesian Grids. J Sci Comput 68, 945–974 (2016). https://doi.org/10.1007/s10915-016-0166-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0166-0

Keywords

Navigation