Skip to main content
Log in

Stabilized Finite Element Methods for the Oberbeck–Boussinesq Model

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We consider conforming finite element approximations for the time-dependent Oberbeck–Boussinesq model with inf-sup stable pairs for velocity and pressure and use a stabilization of the incompressibility constraint. In case of dominant convection, a local projection stabilization method in streamline direction is considered both for velocity and temperature. For the arising nonlinear semi-discrete problem, a stability and convergence analysis is given that does not rely on a mesh width restriction. Numerical experiments validate a suitable parameter choice within the bounds of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Boussinesq, J.: Théorie analytique de la chaleur: mise en harmonie avec la thermodynamique et avec la théorie mécanique de la lumière. Gauthier-Villars, Paris (1903)

    MATH  Google Scholar 

  2. Oberbeck, A.: Über die Wärmeleitung der Flüssigkeiten bei Berücksichtigung der Strömungen infolge von Temperaturdifferenzen. Annalen der Physik 243(6), 271–292 (1879)

    Article  MATH  Google Scholar 

  3. Gelhard, T., Lube, G., Olshanskii, M., Starcke, J.-H.: Stabilized finite element schemes with LBB-stable elements for incompressible flows. J. Comput. Appl. Math. 177(2), 243–267 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Case, M., Ervin, V., Linke, A., Rebholz, L.: A connection between Scott–Vogelius and grad-div stabilized Taylor–Hood FE approximations of the Navier–Stokes equations. SIAM J. Numer. Anal. 49(4), 1461–1481 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Roos, H.-G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection–Diffusion–Reaction and Flow Problems, vol. 24. Springer Science & Business Media, Berlin (2008)

    MATH  Google Scholar 

  6. Lube, G., Rapin, G.: Residual-based stabilized higher-order FEM for a generalized Oseen problem. Math. Models Methods Appl. Sci. 16(07), 949–966 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Braack, M., Burman, E., John, V., Lube, G.: Stabilized finite element methods for the generalized Oseen problem. Comput. Methods Appl. Mech. Eng. 196(4), 853–866 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Matthies, G., Skrzypacz, P., Tobiska, L.: A unified convergence analysis for local projection stabilisations applied to the Oseen problem. ESAIM Math. Model. Numer. Anal. 41(4), 713–742 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Matthies, G., Tobiska, L.: Local projection type stabilization applied to inf-sup stable discretizations of the Oseen problem. IMA J. Numer. Anal. 35(1), 239–269 (2015)

  10. Dallmann, H., Arndt, D., Lube, G.: Local projection stabilization for the Oseen problem. IMA J. Numer. Anal. (2015)

  11. Arndt, D., Dallmann, H., Lube, G.: Local projection FEM stabilization for the time-dependent incompressible Navier–Stokes problem. Numer. Methods Partial Differ. Equ. 31(4), 1224–1250 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. de Frutos, J., García-Archilla, B., John, V., Novo, J.: Grad-div stabilization for the evolutionary Oseen problem with inf-sup stable finite elements. J. Sci. Comput. 66(3), 991–1024 (2015)

  13. Boland, J., Layton, W.: An analysis of the finite element method for natural convection problems. Numer. Methods Partial Differ. Equ. 6(2), 115–126 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Boland, J., Layton, W.: Error analysis for finite element methods for steady natural convection problems. Numer. Funct. Anal. Optim. 11(5–6), 449–483 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dorok, O., Grambow, W., Tobiska, L.: Aspects of Finite Element Discretizations for Solving the Boussinesq Approximation of the Navier–Stokes Equations. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  16. Codina, R., Principe, J., Ávila, M.: Finite element approximation of turbulent thermally coupled incompressible flows with numerical sub-grid scale modelling. Int. J. Numer. Methods Heat Fluid Flow 20(5), 492–516 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Loewe, J., Lube, G.: A projection-based variational multiscale method for large-eddy simulation with application to non-isothermal free convection problems. Math. Models Methods Appl. Sci. 22(02), 1150011-1–1150011-31 (2012)

  18. Girault, V., Scott, L.: A quasi-local interpolation operator preserving the discrete divergence. Calcolo 40(1), 1–19 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ayuso, B., García-Archilla, B., Novo, J.: The postprocessed mixed finite-element method for the Navier–Stokes equations. SIAM J. Numer. Anal. 43(3), 1091–1111 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. García-Archilla, B., Titi, E.S.: Postprocessing the galerkin method: the finite-element case. SIAM J. Numer. Anal. 37(2), 470–499 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dallmann, H.: Finite Element Methods with Local Projection Stabilization for Thermally Coupled Incompressible Flow. PhD thesis, University of Göttingen (2015)

  22. Braack, M., Lube, G., Röhe, L.: Divergence preserving interpolation on anisotropic quadrilateral meshes. Comput. Methods Appl. Math. 12(2), 123–138 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jenkins, E. W., John, V., Linke, A., Rebholz, L. G. On the parameter choice in grad-div stabilization for the Stokes equations. Adv. Comput. Math. 40(2), 491–516 (2014)

  24. Timmermans, L., Minev, P., Van De Vosse, F.: An approximate projection scheme for incompressible flow using spectral elements. Int. J. Numer. Methods Fluids 22(7), 673–688 (1996)

    Article  MATH  Google Scholar 

  25. Guermond, J.-L., Shen, J.: On the error estimates for the rotational pressure-correction projection methods. Math. Comput. 73(248), 1719–1737 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Arndt, D., Dallmann, H.: Error Estimates for the Fully Discretized Incompressible Navier–Stokes Problem with LPS Stabilization, Technical Report, Institute of Numerical and Applied Mathematics, Georg-August-University of Göttingen (2015)

  27. Arndt, D., Dallmann, H., Lube, G.: Quasi-Optimal Error Estimates for the Fully Discretized Stabilized Incompressible Navier–Stokes Problem. ESAIM Math. Model. Numer. Anal. (2015) (under review)

  28. Wagner, S., Shishkina, O., Wagner, C.: Boundary layers and wind in cylindrical Rayleigh–Bénard cells. J. Fluid Mech. 697, 336–366 (2012)

    Article  MATH  Google Scholar 

  29. Grossmann, S., Lohse, D.: Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 27–56 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Bailon-Cuba, J., Emran, M., Schumacher, J.: Aspect ratio dependence of heat transfer and large-scale flow in turbulent convection. J. Fluid Mech. 655, 152–173 (2010)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Arndt.

Additional information

The first author was supported by the RTG 1023 founded by German research council (DFG).

The second author was supported by CRC 963 founded by German research council (DFG).

Appendix

Appendix

Lemma 1

Let \(\epsilon >0\) and \(({\varvec{u}},p,\theta )\in {\varvec{V}}^{div} \times Q\times {\varTheta }\), \(({\varvec{u}}_h,p_h,\theta _h) \in {\varvec{V}}{}_h^{\,div} \times Q_h\times {\varTheta }_h\) be solutions of (2), (3) and (7), (8) satisfying \({\varvec{u}}\in [W^{1,\infty }({\varOmega })]^d\), \(\theta \in W^{1,\infty }({\varOmega })\) and \({\varvec{u}}_h\in [L^{\infty }({\varOmega })]^d\). If Assumptions 1 and 2 hold, we can estimate the difference of the convective terms in the momentum equation

$$\begin{aligned}&c_u({\varvec{u}};{\varvec{u}},{\varvec{e}}_{u,h}) - c_u({\varvec{u}}_h;{\varvec{u}}_h,{\varvec{e}}_{u,h}) \\&\quad \le \frac{C}{\epsilon } \sum _{M\in {\mathcal {M}}_h} \frac{1}{h_M^2} \Vert \varvec{\eta }_{u,h}\Vert ^2_{0,M} + 3 \epsilon ||| \varvec{\eta }_{u,h}|||^2_{\textit{LPS}} + 3 \epsilon ||| {\varvec{e}}_{u,h}|||^2_{\textit{LPS}} \\&\qquad + \left[ |{\varvec{u}}|_{W^{1,\infty }({\varOmega })} + \epsilon \max _{M\in {\mathcal {M}}_h} \{ h_M^2 |{\varvec{u}}|_{W^{1,\infty }(M)}^2 \} + \frac{C}{\epsilon }\max _{M\in {\mathcal {M}}_h} \left\{ \frac{h_M^2}{\gamma _M} | {\varvec{u}}|^2_{W^{1,\infty }(M)} \right\} \right. \\&\left. \qquad +\, \frac{C}{\epsilon } \max _{M\in {\mathcal {M}}_h} \{ \gamma _M^{-1}\Vert {\varvec{u}}\Vert _{\infty ,M}^2 \} + \epsilon \Vert {\varvec{u}}_h\Vert _{\infty }^2 \right] \Vert {\varvec{e}}_{u,h}\Vert ^2_{0} \end{aligned}$$

with C independent of \(h_M\), \(h_L\), \(\epsilon \), the problem parameters and the solutions. The difference of the convective terms in the Fourier equation can be bounded as

$$\begin{aligned}&c_\theta ({\varvec{u}};\theta ,e_{\theta ,h}) - c_\theta ({\varvec{u}}_h;\theta _h,e_{\theta ,h}) \\&\quad \le \frac{C}{\epsilon } \sum _{M\in {\mathcal {M}}_h} h_M^{-2} \Vert \varvec{\eta }_{u,h}\Vert ^2_{0,M} + 3 \epsilon ||| \varvec{\eta }_{u,h}|||^2_{\textit{LPS}} + 3 \epsilon ||| {\varvec{e}}_{u,h}|||^2_{\textit{LPS}}\\&\qquad + \frac{1}{2}|\theta |_{W^{1,\infty }({\varOmega })} \Vert {\varvec{e}}_{u,h}\Vert ^2_{0} + \frac{C}{\epsilon } \sum _{L\in {\mathcal {L}}_h} h_L^{-2}\Vert \eta _{\theta ,h}\Vert _{0,L}^2\\&\qquad + \Vert e_{\theta ,h}\Vert ^2_{0} \left( \frac{1}{2} |\theta |_{W^{1,\infty }({\varOmega })} +\epsilon \Vert {\varvec{u}}_h\Vert _{\infty }^2 + \epsilon \max _{M\in {\mathcal {M}}_h} \{ h_M^2 |\theta |^2_{W^{1,\infty }(M)} \}\right. \\&\left. \qquad +\, \frac{C}{\epsilon } \max _{M\in {\mathcal {M}}_h} \left\{ \frac{h_M^2}{\gamma _M} | \theta |^2_{W^{1,\infty }(M)} \right\} +\frac{C}{\epsilon } \max _{M\in {\mathcal {M}}_h} \{ \gamma _M^{-1} \Vert \theta \Vert _{\infty ,M}^2\} \right) \end{aligned}$$

with \(C>0\) independent of the problem parameters, \(h_M\), \(h_L\) and the solutions.

Proof

Similar estimates can be performed for velocity and temperature. We present the steps for the velocity; for details for the temperature terms, we refer the reader to [21].

We choose the same interpolation operators \(j_u:{\varvec{V}}^{div}\rightarrow {\varvec{V}}{}_h^{\,div}\) and \(j_\theta :{\varTheta }\rightarrow {\varTheta }_h\) as in Theorem 2. With the splitting \(\varvec{\eta }_{u,h}+{\varvec{e}}_{u,h}= ({\varvec{u}}-j_u {\varvec{u}}) + (j_u {\varvec{u}}-{\varvec{u}}_h)\) from (13) and integration by parts, we have

$$\begin{aligned}&c_u({\varvec{u}};{\varvec{u}},{\varvec{e}}_{u,h}) - c_u({\varvec{u}}_h;{\varvec{u}}_h,{\varvec{e}}_{u,h}) \\&\quad = \underbrace{(({\varvec{u}}-{\varvec{u}}_h) \cdot \nabla {\varvec{u}},{\varvec{e}}_{u,h})}_{=: T^u_1} + \underbrace{({\varvec{u}}_h \cdot \nabla ({\varvec{u}}-j_u{\varvec{u}}),{\varvec{e}}_{u,h})}_{=: T^u_2} - \frac{1}{2} \underbrace{((\nabla \cdot {\varvec{u}}_h)j_u{\varvec{u}}, {\varvec{e}}_{u,h})}_{=: T^u_3}. \end{aligned}$$

Now, we bound each term separately. Using Young’s inequality with \(\epsilon >0\), we calculate:

$$\begin{aligned} T^u_1&\le \sum _{M\in {\mathcal {M}}_h} \Vert \nabla {\varvec{u}}\Vert _{\infty ,M} \left( \Vert {\varvec{e}}_{u,h}\Vert ^2_{0,M} + \Vert \varvec{\eta }_{u,h}\Vert _{0,M} \Vert {\varvec{e}}_{u,h}\Vert _{0,M} \right) \nonumber \\&\le |{\varvec{u}}|_{W^{1,\infty }({\varOmega })} \Vert {\varvec{e}}_{u,h}\Vert ^2_{0} + \sum _{M\in {\mathcal {M}}_h} \frac{1}{h_M} | {\varvec{u}}|_{W^{1,\infty }(M)} \Vert \varvec{\eta }_{u,h}\Vert _{0,M} h_M \Vert {\varvec{e}}_{u,h}\Vert _{0,M} \nonumber \\&\le \frac{1}{4\epsilon } \sum _{M\in {\mathcal {M}}_h} \frac{1}{h_M^2} \Vert \varvec{\eta }_{u,h} \Vert ^2_{0,M} + \left( |{\varvec{u}}|_{W^{1,\infty }({\varOmega })} + \epsilon \max _{M\in {\mathcal {M}}_h} \{ h_M^2 |{\varvec{u}}|_{W^{1,\infty }(M)}^2 \} \right) \Vert {\varvec{e}}_{u,h}\Vert ^2_{0}. \end{aligned}$$
(33)

For the term \(T^u_2\), we have via integration by parts

$$\begin{aligned} T^u_2 = ({\varvec{u}}_h \cdot \nabla \varvec{\eta }_{u,h},{\varvec{e}}_{u,h}) = - ({\varvec{u}}_h \cdot \nabla {\varvec{e}}_{u,h},\varvec{\eta }_{u,h}) - ((\nabla \cdot {\varvec{u}}_h){\varvec{e}}_{u,h}, \varvec{\eta }_{u,h}) =: T^u_{21}+T^u_{22}. \end{aligned}$$

Term \(T^u_{21}\) is the most critical one. We calculate using Assumption 2 and Young’s inequality:

$$\begin{aligned} T^u_{21}&= - ({\varvec{u}}_h \cdot \nabla {\varvec{e}}_{u,h},\varvec{\eta }_{u,h}) \le \sum _{M\in {\mathcal {M}}_h} \Vert {\varvec{u}}_h\Vert _{\infty ,M} \Vert \nabla {\varvec{e}}_{u,h}\Vert _{0,M} \Vert \varvec{\eta }_{u,h}\Vert _{0,M} \nonumber \\&\le C \sum _{M\in {\mathcal {M}}_h} \Vert {\varvec{u}}_h\Vert _{\infty ,M} \Vert {\varvec{e}}_{u,h}\Vert _{0,M}h_M^{-1}\Vert \varvec{\eta }_{u,h}\Vert _{0,M} \nonumber \\&\le \epsilon \Vert {\varvec{u}}_h\Vert _{\infty }^2 \Vert {\varvec{e}}_{u,h}\Vert _{0}^2 + \frac{C}{\epsilon } \sum _{M\in {\mathcal {M}}_h} h_M^{-2}\Vert \varvec{\eta }_{u,h}\Vert _{0,M}^2. \end{aligned}$$
(34)

Using \((\nabla \cdot {\varvec{u}},q)=0\) for all \(q\in L^2({\varOmega })\), Assumption 1 and Young’s inequality with \(\epsilon >0\), we obtain

$$\begin{aligned} T^u_{22}&= - ((\nabla \cdot {\varvec{u}}_h)\varvec{\eta }_{u,h}, {\varvec{e}}_{u,h})~ = ((\nabla \cdot (\varvec{\eta }_{u,h} + {\varvec{e}}_{u,h}))\varvec{\eta }_{u,h}, {\varvec{e}}_{u,h}) \nonumber \\&\le \sum _{M\in {\mathcal {M}}_h} \Vert \varvec{\eta }_{u,h}\Vert _{\infty ,M} \left( \Vert \nabla \cdot {\varvec{e}}_{u,h}\Vert _{0,M} + \Vert \nabla \cdot \varvec{\eta }_{u,h} \Vert _{0,M} \right) \Vert {\varvec{e}}_{u,h}\Vert _{0,M} \nonumber \\&\le \sum _{M\in {\mathcal {M}}_h} \frac{Ch_M}{\sqrt{\gamma _M}}|{\varvec{u}}|_{W^{1,\infty }(M)}\sqrt{\gamma _M} \left( \Vert \nabla \cdot {\varvec{e}}_{u,h}\Vert _{0,M} + \Vert \nabla \cdot \varvec{\eta }_{u,h}\Vert _{0,M} \right) \Vert {\varvec{e}}_{u,h}\Vert _{0,M} \nonumber \\&\le \epsilon ||| \varvec{\eta }_{u,h}|||^2_{\textit{LPS}} + \epsilon ||| {\varvec{e}}_{u,h}|||^2_{\textit{LPS}} + \frac{C}{\epsilon } \max _{M\in {\mathcal {M}}_h} \left\{ \frac{h_M^2}{\gamma _M} | {\varvec{u}}|^2_{W^{1,\infty }(M)} \right\} \Vert {\varvec{e}}_{u,h}\Vert ^2_{0}. \end{aligned}$$
(35)

Utilizing the splitting according to (13), we have

$$\begin{aligned} T^u_3 = ((\nabla \cdot {\varvec{u}}_h)j_u{\varvec{u}}, {\varvec{e}}_{u,h}) = -((\nabla \cdot {\varvec{u}}_h)\varvec{\eta }_{u,h}, {\varvec{e}}_{u,h}) +((\nabla \cdot {\varvec{u}}_h) {\varvec{u}}, {\varvec{e}}_{u,h}) = T^u_{22} + T^u_{32}. \end{aligned}$$

and use the same estimate as in (35). For the term \(T^u_{32}\), we use that \((\nabla \cdot {\varvec{u}},q)=0\) for all \(q\in L^2({\varOmega })\) and Young’s inequality:

$$\begin{aligned} |T^u_{32}|&= |(\nabla \cdot {\varvec{u}}_h, {\varvec{u}} \cdot {\varvec{e}}_{u,h})| = | (\nabla \cdot (-\varvec{\eta }_{u,h} - {\varvec{e}}_{u,h} + {\varvec{u}}), {\varvec{u}} \cdot {\varvec{e}}_{u,h} )|\nonumber \\&\le | (\nabla \cdot \varvec{\eta }_{u,h},{\varvec{u}} \cdot {\varvec{e}}_{u,h} ) | +|(\nabla \cdot {\varvec{e}}_{u,h}, {\varvec{u}} \cdot {\varvec{e}}_{u,h} )|\nonumber \\&\le \sum _{M\in {\mathcal {M}}_h} \left( \Vert {\varvec{u}}\Vert _{\infty ,M} \sqrt{\gamma _M}\Vert \nabla \cdot \varvec{\eta }_{u,h}\Vert _{0,M} \frac{1}{\sqrt{\gamma _M}} \Vert {\varvec{e}}_{u,h}\Vert _{0,M} \right. \nonumber \\&\quad \left. + \Vert {\varvec{u}}\Vert _{\infty ,M} \sqrt{\gamma _M}\Vert \nabla \cdot {\varvec{e}}_{u,h}\Vert _{0,M} \frac{1}{\sqrt{\gamma _M}}\Vert {\varvec{e}}_{u,h}\Vert _{0,M} \right) \nonumber \\&\le \epsilon ||| \varvec{\eta }_{u,h}|||_{\textit{LPS}}^2 + \epsilon ||| {\varvec{e}}_{u,h}|||_{\textit{LPS}}^2 + \frac{C}{\epsilon } \max _{M\in {\mathcal {M}}_h} \{ \gamma _M^{-1}\Vert {\varvec{u}}\Vert _{\infty ,M}^2 \} \Vert {\varvec{e}}_{u,h}\Vert _0^2. \end{aligned}$$
(36)

Combining the above bounds (33)–(36) yields the claim. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dallmann, H., Arndt, D. Stabilized Finite Element Methods for the Oberbeck–Boussinesq Model. J Sci Comput 69, 244–273 (2016). https://doi.org/10.1007/s10915-016-0191-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0191-z

Keywords

Mathematics Subject Classification

Navigation