Skip to main content

Advertisement

Log in

Symmetric Energy-Conserved S-FDTD Scheme for Two-Dimensional Maxwell’s Equations in Negative Index Metamaterials

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A new time second-order symmetric energy-conserved splitting FDTD scheme is proposed for solving the two-dimensional Maxwell’s equations in negative index metamaterials with Drude model. The scheme is proved to preserve the discrete electromagnetic energies in metamaterials and is of second order accuracy both in time and space. The proposed scheme also possesses the superconvergence and the second-order convergence for the discrete divergence. Numerical experiments confirm the theoretical results. Simulations of CW Gaussian beam interactions with double negative matematerials slabs and the electromagnetic waves propagating in metamaterials excited by sinusoidal point source are carried out to show supernormal phenomena in negative index metamaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Berénger, J.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bilotti, F., Sevgi, L.: Metamaterials: definitions, properties, applications, and fdtd-based modeling and simulation. Int. J. RF Microw. C. E. 22, 422–438 (2012)

    Article  Google Scholar 

  3. Cevini, G., Oliveri, G., Raffetto, M.: Further comments on the performances of finite element simulators for the solution of electromagnetic problems involving metamaterials. Microw. Opt. Technol. Lett. 48, 2524–2529 (2006)

    Article  Google Scholar 

  4. Chen, W., Li, X., Liang, D.: Energy-conserved splitting fdtd methods for maxwell’s equations. Numer. Math. 108, 445–485 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, W., Li, X., Liang, D.: Symmetric energy-conserved splitting fdtd scheme for the maxwell’s equations. Commun. Comput. Phys. 6, 804–825 (2009)

    Article  MathSciNet  Google Scholar 

  6. Correia, D., Jin, J.: Theoretical analysis of left-handed metamaterials using fdtd-pml method. In: Proceedings of the 2003 SBMO/IEEE MTT-S International, vol. 2, pp. 1033–1036 (2003)

  7. Correia, D., Jin, J.: 3d-fdtd-pml analysis of left-handed metamaterials. Microw. Opt. Technol. Lett. 40, 201–205 (2004)

    Article  Google Scholar 

  8. Engheta, N., Ziolkowski, R.: A positive future for double-negative metamaterials. IEEE T. Microw. Theor. Y. 53, 1535–1556 (2005)

    Article  Google Scholar 

  9. Engheta, N., Ziolkowski, R.: In Metamaterials: Physics and Engineering Explorations. Wiley, New York (2006)

    Book  Google Scholar 

  10. Fang, N., Ying, L.: Stability analysis of fdtd to upml for time dependent maxwell equations. Sci. China Math. 52, 794–816 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gao, L., Zhang, B., Liang, D.: The splitting finite-difference time-domain methods for maxwell’s equations in two dimensions. J. Comput. Appl. Math. 205, 207–230 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goswami, C., Mukherjee, S., Karmakar, S., Pal, M., Ghatak, R.: Fdtd modeling of lorentzian dng metamaterials by auxiliary differential equation method. J. Electromagn. Anal. Appl. 6, 106–114 (2014)

    Google Scholar 

  13. Holden, A.: Towards some real applications for negative materials. Photonic Nanostruct. Fundam. Appl. 3, 96–99 (2005)

    Article  Google Scholar 

  14. Huang, Y., Li, J.: Superconvergence of mixed finite element approximations to 3-d maxwell’s equations in metamaterials. J. Comput. Phys. 230, 8275–8289 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Joannopoulos, J., Meade, R., Winn, J.: Photonic crystals: modeling the flow of light. Princeton University Press, Princeton (1995)

    MATH  Google Scholar 

  16. Kosaka, H., Kawashima, T., Tomita, A., Notomi, M., Tamamura, T., Sato, T., Kawakami, S.: Superprism phenomena in photonic crystals. Phys. Rev. B 58, R10096–R10099 (1998)

    Article  Google Scholar 

  17. Li, J., Shaw, S.: Schemes and estimates for the long-time numerical solution of maxwell’s equations for lorentz metamaterials. Int. J. Numer. Anal. Mod. 12, 343–365 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Li, J., Wood, A.: Finite element analysis for wave propagation in double negative metamaterials. J. Sci. Comput. 32, 263–286 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, W., Liang, D., Lin, Y.: A new energy-conserved s-fdtd scheme for maxwell’s equations in metamaterials. Int. J. Numer. Anal. Mod. 10, 775–794 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Martin, F., Toscano, A.: Guest editorial for special issue on metamaterials and special materials for electromagnetic applications and telecommunications. Microw. Opt. Technol. Lett. 48, 2481–2482 (2006)

    Article  Google Scholar 

  21. Namiki, T.: A new fdtd algorithm based on alternating-direction implicit method. IEEE T. Microw. Theor. Y. 47, 2003–2007 (1999)

    Article  Google Scholar 

  22. Nascimento, V., Jung, K., Borges, B., Teixeira, F.: A study on unconditionally stabel fdtd methods for the modeling of metamaterials. J. Lightwave Technol. 27, 4241–4249 (2009)

    Article  Google Scholar 

  23. Pendry, J.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)

    Article  Google Scholar 

  24. Shelby, A., Smith, D., Schultz, S.: Experimental verification of a negative index of refraction. Science 292, 77–79 (2001)

    Article  Google Scholar 

  25. Smith, D., Padilla, W., Vier, D., Nemat-Nasser, S., Schultz, S.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000)

    Article  Google Scholar 

  26. Taflove, A., Brodwin, M.: Numerical solution of steady-state electromagnetic scattering problems using the time-dependent maxwells equations. IEEE T. Microw. Theor. Y. 23, 623–630 (1975)

    Article  Google Scholar 

  27. Taflove, A., Hagness, S.: Computational electrodynamics: the finite-difference time-domain method. Artech House, Boston (2000)

    MATH  Google Scholar 

  28. Veselago, V.: The electrodynamics of substances with simultaneously negative values of \(\epsilon \) and \(\mu \). Sov. Phys. Usp. 47, 509–514 (1968)

    Article  Google Scholar 

  29. Wang, M., Wu, J., Xu, J., Ge, D., Li, H., Feng, J.: Fdtd simulation on the interaction between gaussian beam and biaxial anisotropic metamaterial slabs. Int. J. Infrared Millim. 29, 167–178 (2008)

    Article  Google Scholar 

  30. Yang, H., Song, H.: Symplectic fdtd method study left-handed material electromagnetic characteristics. Optik 124, 1716–1720 (2013)

    Article  Google Scholar 

  31. Yee, K.: Numerical solution of initial boundary vallue problems involving maxwell’s equations in isotropic media. IEEE T. Antenn. Propa. G. 14, 302–307 (1966)

    Article  MATH  Google Scholar 

  32. Zheng, F., Chen, Z., Zhang, J.: Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method. IEEE T. Microw. Theor. Y. 48, 1550–1558 (2000)

    Article  Google Scholar 

  33. Ziolkowski, R.: Design, fabrication, and testing of double negative metamaterials. IEEE Antenna Propag. 51, 1516 (2003)

    Article  Google Scholar 

  34. Ziolkowski, R.: Pulsed and cw gaussian beam interactions with double negative metamaterial slabs. Opt. Express 11, 662–681 (2003)

    Article  Google Scholar 

  35. Ziolkowski, R.: Propagation in and scattering from a matched metamaterial having a zero index of refraction. Phys. Rev. E 70, 046608 (2004)

    Article  Google Scholar 

  36. Ziolkowski, R., Heyman, E.: Wave propagation in media having negative permittivity and permeability. Phys. Rev. E 64, 056625 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Professor Chi-Wang Shu and the referees for their valuable suggestions which have helped to improve the paper. D. Liang’s work was partly supported by Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanshan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Liang, D. Symmetric Energy-Conserved S-FDTD Scheme for Two-Dimensional Maxwell’s Equations in Negative Index Metamaterials. J Sci Comput 69, 696–735 (2016). https://doi.org/10.1007/s10915-016-0214-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0214-9

Keywords

Navigation