Skip to main content

Advertisement

Log in

A Second-Order, Weakly Energy-Stable Pseudo-spectral Scheme for the Cahn–Hilliard Equation and Its Solution by the Homogeneous Linear Iteration Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present a second order energy stable numerical scheme for the two and three dimensional Cahn–Hilliard equation, with Fourier pseudo-spectral approximation in space. A convex splitting treatment assures the unique solvability and unconditional energy stability of the scheme. Meanwhile, the implicit treatment of the nonlinear term makes a direct nonlinear solver impractical, due to the global nature of the pseudo-spectral spatial discretization. We propose a homogeneous linear iteration algorithm to overcome this difficulty, in which an \(O(s^2)\) (where s the time step size) artificial diffusion term, a Douglas–Dupont-type regularization, is introduced. As a consequence, the numerical efficiency can be greatly improved, since the highly nonlinear system can be decomposed as an iteration of purely linear solvers, which can be implemented with the help of the FFT in a pseudo-spectral setting. Moreover, a careful nonlinear analysis shows a contraction mapping property of this linear iteration, in the discrete \(\ell ^4\) norm, with discrete Sobolev inequalities applied. Moreover, a bound of numerical solution in \(\ell ^\infty \) norm is also provided at a theoretical level. The efficiency of the linear iteration solver is demonstrated in our numerical experiments. Some numerical simulation results are presented, showing the energy decay rate for the Cahn–Hilliard flow with different values of \(\varepsilon \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aristotelous, A., Karakasian, O., Wise, S.M.: A mixed discontinuous Galerkin, convex splitting scheme for a modified Cahn–Hilliard equation and an efficient nonlinear multigrid solver. Discrete Contin. Dyn. Sys. B 18, 2211–2238 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aristotelous, A., Karakasian, O., Wise, S.M.: Adaptive, second-order in time, primitive-variable discontinuous Galerkin schemes for a Cahn–Hilliard equation with a mass source. IMA J. Numer. Anal. 35, 1167–1198 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barrett, J., Blowey, J.: Finite element approximation of the Cahn–Hilliard equation with concentration dependent mobility. Math. Comput. 68, 487–517 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baskaran, A., Hu, Z., Lowengrub, J., Wang, C., Wise, S.M., Zhou, P.: Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation. J. Comput. Phys. 250, 270–292 (2013)

    Article  MathSciNet  Google Scholar 

  5. Baskaran, A., Lowengrub, J., Wang, C., Wise, S.: Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 51, 2851–2873 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boyd, J.: Chebyshev and Fourier Spectral Methods. Dover, New York, NY (2001)

    MATH  Google Scholar 

  7. Caffarelli, L., Muler, N.: An \(L^\infty \) bound for solutions of the Cahn–Hilliard equation. Arch. Rational Mech. Anal. 133, 129–144 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. i. interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    Article  Google Scholar 

  9. Canuto, C., Quarteroni, A.: Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comp. 38, 67–86 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, W., Conde, S., Wang, C., Wang, X., Wise, S.M.: A linear energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 52, 546–562 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, W., Liu, Y., Wang, C., Wise, S.M.: An optimal-rate convergence analysis of a fully discrete finite difference scheme for Cahn–Hilliard–Hele–Shaw equation. Math. Comput., (2016). Published online: http://dx.doi.org/10.1090/mcom3052

  12. Chen, W., Wang, C., Wang, X., Wise, S.M.: A linear iteration algorithm for energy stable second order scheme for a thin film model without slope selection. J. Sci. Comput. 59, 574–601 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cheng, K., Feng, W., Gottlieb, S., Wang, C.: A Fourier pseudospectral method for the “Good“ Boussinesq equation with second-order temporal accuracy. Numer. Methods Partial Differ. Equ. 31(1), 202–224 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Collins, C., Shen, J., Wise, S.M.: An efficient, energy stable scheme for the Cahn–Hilliard–Brinkman system. Commun. Comput. Phys. 13, 929–957 (2013)

    Article  MathSciNet  Google Scholar 

  15. Diegel, A., Feng, X., Wise, S.M.: Convergence analysis of an unconditionally stable method for a Cahn–Hilliard–Stokes system of equations. SIAM J. Numer. Anal. 53, 127–152 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Diegel, A., Wang, C., Wise, S.M.: Stability and convergence of a second order mixed finite element method for the Cahn–Hilliard equation. IMA J. Numer. Anal. (2016). doi:10.1093/imanum/drv065

  17. Du, Q., Nicolaides, R.: Numerical analysis of a continuum model of a phase transition. SIAM J. Numer. Anal. 28, 1310–1322 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Weinan, E.: Convergence of spectral methods for the Burgers equation. SIAM J. Numer. Anal. 29, 1520–1541 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Weinan, E.: Convergence of Fourier methods for Navier–Stokes equations. SIAM J. Numer. Anal. 30, 650–674 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Elliot, C.M., Stuart, A.M.: The global dynamics of discrete semilinear parabolic equations. SIAM J. Numer. Anal. 30, 1622–1663 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Elliott, C.M., French, D.A., Milner, F.A.: A second-order splitting method for the Cahn–Hilliard equation. Numer. Math. 54, 575–590 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Elliott, C.M., Garcke, H.: On the Cahn–Hilliard equation with degenerate mobility. SIAM J. Math. Anal. 27, 404 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Elliott, C.M., Larsson, S.: Error estimates with smooth and nonsmooth data for a finite element method for the Cahn–Hilliard equation. Math. Comp. 58, 603–630 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Eyre, D.: Unconditionally gradient stable time marching the Cahn-Hilliard equation. In: Bullard, J.W., Kalia, R., Stoneham, M., Chen, L.Q. (eds.) Computational and Mathematical Models of Microstructural Evolution, volume 53, pages 1686–1712, Warrendale, PA, USA, (1998). Materials Research Society

  25. Feng, X.: Fully discrete finite element approximations of the Navier–Stokes–Cahn-Hilliard diffuse interface model for two-phase fluid flows. SIAM J. Numer. Anal. 44, 1049–1072 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Feng, X., Prohl, A.: Error analysis of a mixed finite element method for the Cahn–Hilliard equation. Numer. Math. 99, 47–84 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Feng, X., Tang, T., Yang, J.: Long time numerical simulations for phase-field problems using \(p\)-adaptive spectral deferred correction methods. SIAM J. Sci. Comput. 37, A271–A294 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Feng, X., Wise, S.M.: Analysis of a fully discrete finite element approximation of a Darcy–Cahn–Hilliard diffuse interface model for the Hele-Shaw flow. SIAM J. Numer. Anal. 50, 1320–1343 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Furihata, D.: A stable and conservative finite difference scheme for the Cahn–Hilliard equation. Numer. Math. 87, 675–699 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods, Theory and Applications. SIAM, Philadelphia, PA (1977)

    Book  MATH  Google Scholar 

  31. Gottlieb, S., Tone, F., Wang, C., Wang, X., Wirosoetisno, D.: Long time stability of a classical efficient scheme for two dimensional Navier–Stokes equations. SIAM J. Numer. Anal. 50, 126–150 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gottlieb, S., Wang, C.: Stability and convergence analysis of fully discrete Fourier collocation spectral method for 3-d viscous Burgers’ equation. J. Sci. Comput. 53, 102–128 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Guan, Z., Lowengrub, J.S., Wang, C., Wise, S.M.: Second-order convex splitting schemes for nonlocal Cahn–Hilliard and Allen–Cahn equations. J. Comput. Phys. 277, 48–71 (2014)

    Article  MathSciNet  Google Scholar 

  34. Guan, Z., Wang, C., Wise, S.M.: A convergent convex splitting scheme for the periodic nonlocal Cahn–Hilliard equation. Numer. Math. 128, 377–406 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Guillén-González, F., Tierra, G.: Second order schemes and time-step adaptivity for Allen–Cahn and Cahn–Hilliard models. Comput. Math. Appl. 68(8), 821–846 (2014)

    Article  MathSciNet  Google Scholar 

  36. Guo, J., Wang, C., Wise, S.M., Yue, X.: An \(H^2\) convergence of a second-order convex-splitting, finite difference scheme for the three-dimensional Cahn-Hilliard equation. Commu. Math. Sci. 14, 489–515 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. He, Y., Liu, Y., Tang, T.: On large time-stepping methods for the Cahn–Hilliard equation. Appl. Numer. Math. 57(4), 616–628 (2006)

    MathSciNet  MATH  Google Scholar 

  38. Hesthaven, J., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-dependent Problems. Cambridge University Press, Cambridge, UK (2007)

    Book  MATH  Google Scholar 

  39. Hu, Z., Wise, S., Wang, C., Lowengrub, J.: Stable and efficient finite-difference nonlinear-multigrid schemes for the phase-field crystal equation. J. Comput. Phys. 228, 5323–5339 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kay, D., Welford, R.: Efficient numerical solution of Cahn–Hilliard–Navier Stokes fluids in 2d. SIAM J. Sci. Comput. 29, 2241–2257 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kay, D., Welford, Richard: A multigrid finite element solver for the Cahn–Hilliard equation. J. Comput. Phys. 212, 288–304 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Khiari, N., Achouri, T., Ben Mohamed, M.L., Omrani, K.: Finite difference approximate solutions for the Cahn-Hilliard equation. Numer. Meth. PDE 23, 437–455 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kim, J.S., Kang, K., Lowengrub, J.S.: Conservative multigrid methods for Cahn–Hilliard fluids. J. Comput. Phys. 193, 511–543 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  44. Li, D., Qiao, Z.: Stabilized times schemes for high accurate finite differences solutions of nonlinear parabolic equations. J. Sci. Comput., (2016). Submitted and in review

  45. Li, D., Qiao, Z., Tang, T.: Characterizing the stabilization size for semi-implicit Fourier-spectral method to phase field equations. SIAM J. Numer. Anal. (2016). Accepted and in press

  46. Shen, J., Wang, C., Wang, X., Wise, S.M.: Second-order convex splitting schemes for gradient flows with Ehrlich–Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50, 105–125 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discrete Contin. Dyn. Sys. A 28, 1669–1691 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang, C., Wang, X., Wise, S.M.: Unconditionally stable schemes for equations of thin film epitaxy. Discrete Contin. Dyn. Sys. A 28, 405–423 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wang, C., Wise, S.M.: Global smooth solutions of the modified phase field crystal equation. Methods Appl. Anal. 17, 191–212 (2010)

    MathSciNet  MATH  Google Scholar 

  50. Wang, C., Wise, S.M.: An energy stable and convergent finite-difference scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 49, 945–969 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wise, S.M.: Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn–Hilliard–Hele–Shaw system of equations. J. Sci. Comput. 44, 38–68 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  52. Wise, S.M., Kim, J.S., Lowengrub, J.S.: Solving the regularized, strongly anisotropic Chan–Hilliard equation by an adaptive nonlinear multigrid method. J. Comput. Phys. 226, 414–446 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  53. Wise, S.M., Wang, C., Lowengrub, J.S.: An energy stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47, 2269–2288 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  54. Wu, X., van Zwieten, G.J., van der Zee, K.G.: Stabilized second-order convex splitting schemes for Cahn–Hilliard models with application to diffuse-interface tumor-growth models. Inter. J. Numer. Methods Biomed. Eng. 30, 180–203 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank Wenbin Chen, Xiaoming Wang and the anonymous reviewers for their valuable comments and suggestions. This work is supported in part by the NSF DMS-1418689 (C. Wang), NSF DMS-1418692 (S. Wise), NSFC 11271281 (X. Yue), and the fund of China Scholarship Council 201408515169 (K. Cheng). The first author also thanks University of Massachusetts Dartmouth, for support during his visit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Wang.

Appendices

Proof of Lemma 2.1

For a 3-D grid function f with its discrete Fourier expansion as (5), an application of discrete Parseval equality gives

$$\begin{aligned}&\Vert f \Vert _{-1,N}^2 = \Vert ( - \Delta _N )^{-\frac{1}{2}} f \Vert _2^2 = {\mathop {\mathop {\sum }\limits _{{\ell ,m,n =-K}}}\limits _{(\ell ,m,n) \ne \mathbf{0}}^K} \lambda _{\ell , m, n}^{-1} | \hat{f}_{\ell ,m,n} |^2 , \end{aligned}$$
(99)
$$\begin{aligned}&\Vert \nabla _N f \Vert _2^2 = {\mathop {\mathop {\sum }\limits _{{\ell ,m,n =-K}}}\limits _{(\ell ,m,n) \ne \mathbf{0}}^K} \lambda _{\ell , m, n} | \hat{f}_{\ell ,m,n} |^2 , \end{aligned}$$
(100)

with \(\lambda _{\ell , m, n} = 4 \pi ^2 ( \ell ^2 + m^2 + n^2 )\). This in turn yields

$$\begin{aligned} \gamma _1 \Vert f \Vert _{-1,N}^2 + \gamma _2 \Vert \nabla _N f \Vert _2^2 = {\mathop {\mathop {\sum }\limits _{{\ell ,m,n =-K}}}\limits _{(\ell ,m,n) \ne \mathbf{0}}^K} \left( \gamma _1 \lambda _{\ell , m, n}^{-1} + \gamma _2 \lambda _{\ell , m, n} \right) | \hat{f}_{\ell ,m,n} |^2 . \end{aligned}$$
(101)

A similar calculation also gives

$$\begin{aligned} \Vert f \Vert _{H_N^{\alpha _0}}^2 = {\mathop {\mathop {\sum }\limits _{{\ell ,m,n =-K}}}\limits _{(\ell ,m,n) \ne \mathbf{0}}^K} {\alpha _0} \lambda _{\ell , m, n}^{\alpha _0} | \hat{f}_{\ell ,m,n} |^2 , \quad \forall 0< \alpha _0 < 1 . \end{aligned}$$
(102)

By making comparison between (101) and (102), we conclude that (19) is a direct consequence of the following application of Young’s inequality:

$$\begin{aligned} \gamma _1 \lambda _{\ell , m, n}^{-1} + \gamma _2 \lambda _{\ell , m, n} \ge C^* \gamma _1^{\frac{1-\alpha _0}{2}} \gamma _2^{\frac{1+\alpha _0}{2}} \lambda _{\ell , m, n}^{\alpha _0} , \quad \forall -K \le \ell , m, n \le K , \end{aligned}$$
(103)

with \(C^*\) only dependent on \(\alpha _0\) and \(\Omega \).

For the proof of (20), a discrete version of Sobolev embedding from \(H^{\alpha _0}\) into \(\ell ^4\), we have to utilize the continuous extension of f, given by (22). For simplicity of presentation, we focus our analysis in the 2-D case; for the 3-D grid function, the analysis could be carried out in a similar, yet more tedious way. And also, \(\Vert \cdot \Vert \) is denoted as the standard \(L^2\) norm for a continuous function.

We denote the following grid function

$$\begin{aligned} g_{i,j} = \left( f_{i,j} \right) ^2 . \end{aligned}$$
(104)

A direct calculation shows that

$$\begin{aligned} \left\| f \right\| _4 = \left( \left\| g \right\| _2 \right) ^{\frac{1}{2}} . \end{aligned}$$
(105)

Note that both norms are discrete in the above identity. Moreover, we assume the grid function g has a discrete Fourier expansion as

$$\begin{aligned} g_{i,j} = \sum _{\ell ,m=-K}^{K} (\hat{g}^N_c)_{\ell ,m} \mathrm {e}^{2\pi \mathrm{i} (\ell x_i + m y_j )} , \end{aligned}$$
(106)

and denote its continuous version as

$$\begin{aligned} G (x,y) = \sum _{\ell ,m=-K}^{K} (\hat{g}^N_c)_{\ell ,m} \mathrm {e}^{2\pi \mathrm{i} (\ell x + m y )} \in \mathcal{P}_{K} . \end{aligned}$$
(107)

With an application of the Parseval equality at both the discrete and continuous levels, we have

$$\begin{aligned} \left\| g \right\| _2^2 = \left\| G \right\| ^2 = \sum _{\ell ,m=-K}^{K} \left| (\hat{g}^N_c)_{\ell ,m} \right| ^2 . \end{aligned}$$
(108)

On the other hand, we also denote

$$\begin{aligned} H (x,y) = \left( f_S (x,y) \right) ^2 = \sum _{\ell ,m=-2K}^{2K} (\hat{h}^N)_{\ell ,m} \mathrm {e}^{2\pi \mathrm{i} (\ell x + m y )} \in \mathcal{P}_{2K} . \end{aligned}$$
(109)

The reason for \(H \in \mathcal{P}_{2K}\) is because \(f_N \in \mathcal{P}_{K}\). We note that \(H \ne G\), since \(H \in \mathcal{P}_{2K}\), while \(G \in \mathcal{P}_{K}\), although H and G have the same interpolation values on at the numerical grid points \((x_i, y_j)\). In other words, g is the interpolation of H onto the numerical grid point and G is the continuous version of g in \(\mathcal{P}_{K}\). As a result, collocation coefficients \(\hat{g}_c^N\) for G are not equal to \(\hat{h}^N\) for H, due to the aliasing error. In more detail, for \(- K \le \ell , m \le K\), we have the following representations:

$$\begin{aligned} ( \hat{g}_c^N )_{\ell ,m} = \left\{ \begin{array}{l} (\hat{h}^N)_{\ell ,m} + (\hat{h}^N)_{\ell +N,m} + (\hat{h}^N)_{\ell ,m+N} + (\hat{h}^N)_{\ell +N,m+N} , \, \, \ell< 0 , m< 0 ,\\ (\hat{h}^N)_{\ell ,m} + (\hat{h}^N)_{\ell +N,m} , \, \, k< 0 , m = 0,\\ (\hat{h}^N)_{\ell ,m} + (\hat{h}^N)_{\ell +N,m} + (\hat{h}^N)_{\ell ,m-N} + (\hat{h}^N)_{\ell +N,m-N} , \, \, \ell< 0 , m> 0 ,\\ (\hat{h}^N)_{\ell ,m} + (\hat{h}^N)_{\ell -N,m} + (\hat{h}^N)_{\ell ,m-N} + (\hat{h}^N)_{\ell -N,m-N} , \, \, \ell> 0 , m> 0 ,\\ (\hat{h}^N)_{\ell ,m} + (\hat{h}^N)_{\ell -N,m} , \, \, \ell> 0 , m = 0 ,\\ (\hat{h}^N)_{\ell ,m} + (\hat{h}^N)_{\ell -N,m} + (\hat{h}^N)_{\ell ,m+N} + (\hat{h}^N)_{\ell -N,m+N} , \, \, \ell> 0 , m< 0 ,\\ (\hat{h}^N)_{\ell ,m} + (\hat{h}^N)_{\ell ,m+N} , \, \, \ell = 0 , m < 0 ,\\ (\hat{h}^N)_{\ell ,m} , \, \, \ell = 0 , m = 0 ,\\ (\hat{h}^N)_{\ell ,m} + (\hat{h}^N)_{\ell ,m-N} , \, \, \ell = 0 , m > 0 . \end{array} \right. \end{aligned}$$
(110)

With an application of Cauchy inequality, it is clear that

$$\begin{aligned} \sum _{\ell ,m=-K}^{K} \left| (\hat{g}^N_c)_{\ell ,m} \right| ^2 \le 4 \left| \sum _{\ell ,m=-2K}^{2K} (\hat{h}^N)_{\ell ,m} \right| ^2 . \end{aligned}$$
(111)

Meanwhile, an application of Parseval’s identity to the Fourier expansion (109) gives

$$\begin{aligned} \left\| H \right\| ^2 = \left| \sum _{\ell ,m=-2K}^{2K} (\hat{h}^N)_{\ell ,m} \right| ^2 . \end{aligned}$$
(112)

Its comparison with (108) indicates that

$$\begin{aligned} \left\| g \right\| _2^2 = \left\| G \right\| ^2 \le 4 \left\| H \right\| ^2 , \quad \text{ i.e. } \, \, \left\| g \right\| _2 \le 2 \left\| H \right\| , \end{aligned}$$
(113)

with the estimate (111) applied. Meanwhile, since \(H (x,y) = \left( f_N (x,y) \right) ^2\), we have

$$\begin{aligned} \left\| f_N \right\| _{L^4} = \left( \left\| H \right\| _2 \right) ^{\frac{1}{2}} . \end{aligned}$$
(114)

Therefore, a combination of (105), (113) and (114) results in

$$\begin{aligned} \left\| f \right\| _4 = \left( \left\| g \right\| _2 \right) ^{\frac{1}{2}} \le \left( 2 \left\| H \right\| _{L^2} \right) ^{\frac{1}{2}} \le \sqrt{2} \left\| f_N \right\| _{L^4} . \end{aligned}$$
(115)

For the continuous function \(f_N (x,y)\), we have the following estimate in Sobolev embedding (in 2-D):

(116)

Then we arrive at

$$\begin{aligned} \left\| f \right\| _4 \le \sqrt{2} \left\| f_N \right\| _{L^4} \le C_0 \Vert (-\Delta _N)^{\frac{1}{2}} f \Vert _2 . \end{aligned}$$
(117)

This finishes the proof of (20) for \(d=2\).

The 3-D case could be analyzed in the same fashion, and the details are skipped for the sake of brevity. The proof of Lemma 2.1 is completed.

Proof of Lemma 2.2

For any grid function \(f\in {\mathcal {G}}_N\), we recall its continuous extension, \(f_S = S_N(f)\in {\mathcal {P}}_K\), as defined in (22). Since f is the point-wise grid interpolation of \(f_S\), we have

$$\begin{aligned} \left\| f \right\| _\infty \le \left\| f_S \right\| _{L^\infty } . \end{aligned}$$
(118)

For the smooth function \(f_S\), applying the 3-D Sobolev inequality associated to the embedding \(H^2\hookrightarrow L^\infty \) and elliptic regularity, we have

$$\begin{aligned} \left\| f_S \right\| _{L^\infty } \le C \left( \left| \int _\Omega f_S \, d {\varvec{x}}\right| + \left\| \Delta f_S \right\| _{L^2} \right) . \end{aligned}$$
(119)

Subsequently, the maximum norm estimate (21) is a direct consequence of the following identities:

$$\begin{aligned} h^3 \sum _{i,j,k=0}^{N-1}f_{i,j,k} =: \overline{f} = \overline{f_S} := \int _\Omega \, f_S \, d {\varvec{x}}, \quad \Vert \Delta _N f \Vert _2 = \Vert \Delta f_S \Vert _{L^2} . \end{aligned}$$
(120)

This finishes the proof of Lemma 2.2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, K., Wang, C., Wise, S.M. et al. A Second-Order, Weakly Energy-Stable Pseudo-spectral Scheme for the Cahn–Hilliard Equation and Its Solution by the Homogeneous Linear Iteration Method. J Sci Comput 69, 1083–1114 (2016). https://doi.org/10.1007/s10915-016-0228-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0228-3

Keywords

Navigation